Study of p-Laplacian hybrid fractional differential equations involving the generalized Caputo proportional fractional derivative

Document Type : Research Paper

Authors

LMACS Laboratory, Sultan Moulay Slimane University, Beni Mellal, Morocco.

Abstract

In this paper, we investigate the existence of solutions for hybrid p-Laplacian differential equations involving the generalized fractional proportional Caputo derivative of order $1<\vartheta<2$, by employing Schauder’s fixed point theorem. To illustrate the practical application of our findings, we provide a concrete example

Keywords

Main Subjects


  • [1] N. Chefnaj, K. Hilal, and A. Kajouni, Impulsive Ψ-Caputo hybrid fractional differential equations with non-local conditions. Journal of Mathematical Sciences, 280 (2024), 168–179.
  • [2] N. Chefnaj, A. Taqbibt, K. Hilal, and S. Melliani, Study of nonlocal boundary value problems for hybrid differential equations involving Ψ-Caputo Fractional Derivative with measures of noncompactness, Journal of Mathematical Sciences, 271 (2023), 458–467.
  • [3] T. Chen and W. Liu, An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator, Applied Mathematics Letters, 25 (2012), 1671–1675.
  • [4] Y. Dong and W. Zhang, Existence and multiplicity of solutions for fractional p-Laplacian equation involving critical concave-convex nonlinearities, Advanced Nonlinear Studies, (2024).
  • [5] A. El Mfadel, S. Melliani, and M. Elomari, Existence and uniqueness results for Ψ-Caputo fractional boundary value problems involving the p-Laplacian operator, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys, 84(1) (2022), 37-46.
  • [6] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, 14 (2003).
  • [7] K. Hilal, A. Kajouni, and S. Zerbib, Hybrid fractional differential equation with nonlocal and impulsive conditions, Filomat, 37, (2023) 3291–3303.
  • [8] F. Jarad, M. A. Alqudah, and T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167—176.
  • [9] F. Jarad, T. Abdeljawad, S. Rashid, and Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 1–16.
  • [10] K. Kirti and A. Kumar, Higher-ordered hybrid fractional differential equations with fractional boundary conditions: Stability analysis and existence theory, Chaos, Solitons & Fractals, 185 (2024), 115127.
  • [11] J. Klafter, S. C. Lim, and R. Metzler, Fractional dynamics, Recent advances, (2012).
  • [12] I. Mallah, I. Ahmed, A. Akgul, F. Jarad, and S. Alha, On ψ-Hilfer generalized proportional fractional operators, AIMS Math., 7 (2021), 82-103.
  • [13] S. Mengqiu, Existence and multiplicity of solutions to p-Laplacian equations on graphs, Revista Matem´atica Complutense 37(1) (2024), 185-203.
  • [14] Y. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Applied Mechanics Reviews, 50 (1997).
  • [15] J. Tariboon, A. Samadi, and S. K. Ntouyas, Nonlocal boundary value problems for Hilfer generalized proportional fractional differential equations, Fractal and Fractional, 6(3) (2022), 154.
  • [16] A. Wafa F, H. Khan, and J. Alzabut, Stability analysis for a fractional coupled Hybrid pantograph system with p-Laplacian operator, Results in Control and Optimization, 14 (2024), 100333.
  • [17] S. Zerbib, K. Hilal, and A. Kajouni, Some new existence results on the hybrid fractional differential equation with variable order derivative, Results in Nonlinear Analysis, 6 (2023), 34–48.
  • [18] S. Zerbib, K. Hilal, and A. Kajouni, On the hybrid fractional semilinear evolution equations, International Journal of Nonlinear Analysis and Applications, (2024).