Analysis of a chaotic and a non-chaotic 3D dynamical system: the Quasi-Geostrophic omega equation and the Lorenz-96 model

Document Type : Research Paper

Author

Department of Mathematics, University of Thessaly, Lamia, 35100 Fthiotis, Greece.

Abstract

This paper delves into analyzing two 3D dynamical systems of ordinary differential equations (ODEs), namely the Quasi-Geostrophic Omega Equation and the Lorenz-96 Model. The primary objective of this paper is to analyze the chaotic and non-chaotic behavior exhibited by the QG Omega Equation and the Lorenz-96 Model in three dimensions. Through numerical simulations and analytical techniques, the author aims to characterize the existence and properties of attractors within these systems and explore their implications for atmospheric dynamics. Furthermore, we investigate how changes in initial conditions and system parameters influence the behavior of the dynamical systems. Employing a combination of numerical simulations and analytical methods, including stability analysis and Lyapunov functions,the author uncovers patterns and correlations that shed light on the mechanisms driving atmospheric phenomena. This analysis contributes to the understanding of atmospheric dynamics and has implications for weather forecasting and climate modeling, offering insights into the predictability and stability of atmospheric systems. Finally, the author presents the phase portrait of the chaotic system and visualizations of the attractors of both systems.

Keywords

Main Subjects


  • [1] T. Ak, A. Saha, S. Dhawan, and A. H. Kara, Investigation of Coriolis effect on oceanic flows and its bifurcation via geophysical Korteweg–de Vries equation, Numer. Methods Partial Differ. Equ., 36(6) (2020), 1234-1253.
  • [2] J. T. Allen, D. A. Smeed, A. J. G. Nurser, J. W. Zhang, and M. Rixen, Diagnosis of vertical velocities with the QG omega equation: An examination of the errors due to sampling strategy, Deep-Sea Res. I: Oceanogr. Res. Pap., 48(2) (2001), 315-346.
  • [3] A. Amemiya, M. Shlok, and T. Miyoshi, Application of recurrent neural networks to model bias correction: Idealized experiments with the Lorenz-96 model, J. Adv. Model. Earth Syst., 15(2) (2023), e2022MS003164.
  • [4] J. D. Annan and J. C. Hargreaves, Efficient parameter estimation for a highly chaotic system, Tellus A: Dyn. Meteorol. Oceanogr., 56(5) (2004), 520-526.
  • [5] H. Badawi, O. Abu Arqub, and N. Shawagfeh, Stochastic integrodifferential models of fractional orders and Leffler nonsingular kernels: well-posedness theoretical results and Legendre Gauss spectral collocation approximations, Chaos Solit. Fractals: X, 10 (2023), 100091.
  • [6] D. Billingsley, Review of QG theory—Part II: The omega equation, Natl. Wea. Dig., 21(2) (1997), 43-51.
  • [7] J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino, Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, J. Comput. Sci., 44 (2020), 101171.
  • [8] D. S. Broomhead, R. Jones, G. P. King, and E. R. Pike, Singular system analysis with application to dynamical systems, In Chaos, noise and fractals, CRC Press, (2020), 15-27.
  • [9] N. Črnjarić-Žic, S. Maćešić, and I. Mezić Koopman operator spectrum for random dynamical systems, J. Nonlinear Sci., 30 (2020), 2007-2056.
  • [10] G. S. Duane, Synchronized chaos in extended systems and meteorological teleconnections, PRE, 56(6) (1997), 6475.
  • [11] D. J. Gagne, H. M. Christensen, A. C. Subramanian, and A. H. Monahan, Machine learning for stochastic parameterization: Generative adversarial networks in the Lorenz’96 model, J. Adv. Model. Earth Syst., 12(3) (2020), e2019MS001896.
  • [12] N. Gkrekas, Applying Laplace Transformation on Epidemiological Models as Caputo Derivatives, Math. Biol. Bioinform., 19(1) (2024), 61-76.
  • [13] W. He and J. Cao, Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure, Chaos, 19(1) (2009), 61-76.
  • [14] J. R. Horton and G. J. Hakim, An introduction to dynamic meteorology, Academic Press, 88 (2013).
  • [15] B. J. Hoskins, I. Draghici, and H. C. Davies, A new look at the ω-equation, Q. J. R. Meteorol. Soc., 104(439) (1978), 31-38.
  • [16] B. Jiao, L. Ran, N. Li, R. Cai, T. Qu, and Y. Zhou, Comparative Analysis of the Generalized Omega Equation and Generalized Vertical Motion Equation, Adv. Atmos. Sci., 40(2023), 856-873.
  • [17] A. Karimi and M. R. Paul, Extensive chaos in the Lorenz-96 model, Chaos, 20(4) (2010).
  • [18] O. K. Koriko, K. S. Adegbie, A. S. Oke, and I. L. Animasaun. , Exploration of Coriolis force on motion of air over the upper horizontal surface of a paraboloid of revolution, Phys. Scr., 95(3) (2020), 035210.
  • [19] D. J. Lea, M. R. Allen, and T. W. Haine, Sensitivity analysis of the climate of a chaotic system, Tellus A: Dyn. Meteorol. Oceanogr., 52(5) (2000), 523-532.
  • [20] E. N. Lorenz, Deterministic nonperiodic flow, JAS, 20(2) (1963), 130-141.
  • [21] E. N. Lorenz and K. Haman, The essence of chaos, Pure Appl. Geophys., 147(3) (1996), 598-599.
  • [22] B. Maayah, O. Abu Arqub, S. Alnabulsi, and H. Alsulami, Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme, Chin. J. Phys., 80 (2022), 463-483.
  • [23] B. Maayah and O. Abu Arqub, Adaptive the Dirichlet model of mobile/immobile advection/dispersion in a time-fractional sense with the reproducing kernel computational approach: Formulations and approximations, Int. J. Mod. Phys. B, 37(18) (2023), 2350179.
  • [24] B. Maayah, A. Moussaoui, S. Bushnaq, and O. Abu Arqub, The multistep Laplace optimized decomposition method for solving fractional-order coronavirus disease model (COVID-19) via the Caputo fractional approach, Demonstr. Math., 55(1) (2022), 963-977.
  • [25] C. C. Maiocchi, V. Lucarini, A. Gritsun, and Y. Sato, Heterogeneity of the attractor of the Lorenz’96 model: Lyapunov analysis, unstable periodic orbits, and shadowing properties, Phys. D: Nonlinear Phenom., 457 (2024), 133970.
  • [26] D. T. Mihailović, G. Mimić, and I. Arsenić, Climate predictions: The chaos and complexity in climate models, Adv. Meteorol., (2014).
  • [27] H. Millán, A. Kalauzi, M. Cukic, and R. Biondi, Nonlinear dynamics of meteorological variables: Multifractality and chaotic invariants in daily records from Pastaza, Ecuador, Theor. Appl. Climatol., 102 (2002), 75-85.
  • [28] C. Mou, Z. Wang, D. R. Wells, X. Xie, and T. Iliescu, Reduced order models for the quasi-geostrophic equations: A brief survey, Fluids, 6(1) (2020), 16.
  • [29] I. Petromichelakis and I. A. Kougioumtzoglou, Addressing the curse of dimensionality in stochastic dynamics: A Wiener path integral variational formulation with free boundaries, Proc. R. Soc. A, 476(2243) (2020), 20200385.
  • [30] B. Ramadevi and K. Bingi, Chaotic Time Series Forecasting Approaches Using Machine Learning Techniques: A Review, Symmetry, 10 (2022), 955.
  • [31] I. Rizos and N. Gkrekas, Can a mathematical model describe the main problems of the modern world?, U.Porto J. Eng., 10(1) (2024), 59-68.
  • [32] I. Rizos and N. Gkrekas, Teaching and learning sciences within the COVID-19 pandemic era in a Greek university department, U. Porto J. Eng., 8(1) (2022), 73-83.
  • [33] J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation, Commun. Pure Appl. Math., 58(6) (2005), 821-866.
  • [34] A. M. Selvam, Nonlinear dynamics and chaos: applications in meteorology and atmospheric physics, Self-organized Criticality and Predictability in Atmospheric Flows: The Quantum World of Clouds and Rain, Springer, (2017), 1-40.
  • [35] B. W. Shen, R. A. Pielke Sr., X. Zeng, J. J. Baik, S. Faghih-Naini, J. Cui, R. Atlas, and T. A. L. Reyes, Is Weather Chaotic? Coexisting Chaotic and Non-chaotic Attractors Within Lorenz Models, In C. H. Skiadas, Y. Dimotikalis (eds) 13th Chaotic Modeling and Simulation International Conference, CHAOS 2020, Springer Proceedings in Complexity, (2020).
  • [36] Q. Sun, T. Miyoshi, and S. Richard, Control simulation experiments of extreme events with the Lorenz-96 model, Nonlin. Processes Geophys., (2022), 1-18.
  • [37] G. F. Weber, Information Dynamics in Complex Systems Negates a Dichotomy between Chance and Necessity, Information, 11 (2020), 245.
  • [38] D. S. Wilks, Effects of stochastic parametrizations in the Lorenz’96 system, Q. J. R. Meteorol. Soc., 131(606) (2005), 389-407.
  • [39] J. Wu, The quasi-geostrophic equation and its two regularizations, Commun. Partial Differ. Equ., 27(5-6) (2002), 1161-1181.
  • [40] X. Yin, Q. Liu, S. Ma, and S. Bai, Solitonic interactions for Rossby waves with the influence of Coriolis parameters, Results Phys., 28 (2021), 104593.
  • [41] Y. Zhang, Z. Hua, H. Bao, H. Huang, and Y. Zhou, An n-dimensional chaotic system generation method using parametric Pascal matrix, IEEE Trans. Ind. Inform., 18(12) (2022), 8434-8444.
  • [42] R. Zhang and L. Yang, Theoretical analysis of equatorial near-inertial solitary waves under complete Coriolis parameters, AOS, 40 (2021), 54-61.
  • [43] Y. Zheng and N. Li, Non-asymptotic identification of linear dynamical systems using multiple trajectories, IEEE Control Syst. Lett., 5(5) (2020), 1693-1698.