A novel hybrid approach to approximate fractional sub-diffusion equation

Document Type : Research Paper

Authors

School of Mathematics and Computer Science, Iran University of Science and Technology, Narmak 16844, Tehran, Iran.

Abstract

This article introduces a new numerical hybrid approach based on an operational matrix and spectral technique to
solve Caputo fractional sub-diffusion equations. This method transforms the model into a set of nonlinear algebraic
equation systems. Chebyshev polynomials are used as basis functions. The study includes theoretical analysis
to demonstrate the convergence and error bounds of the proposed method. Two test problems are conducted to
illustrate the method’s accuracy. The results indicate the efficiency of the proposed method.

Keywords

Main Subjects


  • [1] S. Abbasbandy, S. Kazem, M. S. Alhuthali, and H. H. Alsulami, Application of the operational matrix of fractional order Legendre functions for solving the time-fractional convectiondiffusion equation, Appl. Math. Comput., 266 (2015), 31–40.
  • [2] I. G. Ameen, M. A. Zaky, and E. H. Doha, Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative, Math. Comput. Simul., 392 (2021).
  • [3] A. Baseri, S. Abbasbandy, and E. Babolian, A collocation method for fractional diffusion equation in a long time with Chebyshev functions, Appl. Math. Comput., 322 (2018), 55–65.
  • [4] L. Beghin and C. Ricciuti, Lvy Processes Linked to the Lower-Incomplete Gamma Function, Fractal. Fract., 5 (2021).
  • [5] H. Chen, S. Lu¨, and W. Chen, Spectral methods for the time fractional diffusion-wave equation in a semi-infinite channel, Comput. Math. Appl., 71 (2016), 1818–1830.
  • [6] M. Dehghan, M. Abbaszadeh, and A. Mohebbi, Error estimate for the numerical solution of fractional reactionsub-diffusion process based on a meshless method, J. Comput. Appl. Math., 280 (2015), 14–36.
  • [7] M. D’Elia, C. Glusa, T. Abdeljawad, and N. Mlaiki, A fractional model for anomalous diffusion with increased variability: Analysis, algorithms and applications to interface problems, Numer. Methods. Partial. Differ. Equ., 38 (2022), 2084–2103.
  • [8] C. S. Drapaca, The Impact of Anomalous Diffusion on Action Potentials in Myelinated Neurons, Fractal Fract., 5 (2021).
  • [9] E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. appl., 62 (2011), 2364–2373.
  • [10] H. Hassani and Z. Avazzadeh, Novel operational matrices for solving 2-dim nonlinear variable order fractional optimal control problems via a new set of basis functions, Appl. Numer. Math., 166 (2021), 26–39.
  • [11] M. R. Hooshmandasl, M. H. Heydari, and C. Cattani, Numerical solution of fractional sub-diffusion and timefractional diffusion-wave equations via fractional-order Legendre functions, Eur. Phys. J. Plus., 131 (2016).
  • [12] M. Jani, E. Babolian and B. Dambaru, A Petrov-Galerkin spectral method for the numerical simulation and analysis of fractional anomalous diffusion, Int. J. Comput. Math., 44 (2020), 2021–2032.
  • [13] F. Kamali and H. Saeedi, Generalized fractional-order Jacobi functions for solving a nonlinear systems of fractional partial differential equations numerically, Math. Methods Appl. Sci., 41 (2017), 3155–3174.
  • [14] F. Lin and H. Qu, A Runge-Kutta Gegenbauer spectral method for nonlinear fractional differential equations with Riesz fractional derivatives, Int. J. Comput. Math., 96 (2018), 417–435.
  • [15] N. Mendes, M. Chhay, J. Berger, and D. Dutykh, Numerical Methods for Diffusion Phenomena in Building Physics, Springer Cham, 2019.
  • [16] M. Molavi-Arabshahi, J. Rashidinia, and S. Tanoomand, An efficient spectral collocation method based on the generalized Laguerre polynomials to multi-term time fractional diffusion-wave equations, AIP Advances, 14(2) (2024), DOI: 10.1063/5.0187493.
  • [17] M. Molavi-Arabshahi, J. Rashidinia, and M. Yousefi, An efficient approach for solving the fractional model of the human T-cell lymphotropic virus I by the spectral method, Journal of Mathematical Modeling, 11(3) (2023), 463–477.
  • [18] N. Rajagopala, S. Balajia, R. Seethalakshmia, and V. S. Balajib, A new numerical method for fractional order Volterra integro-differential equations, Ain. Shams. Eng. J., 11 (2020), 171–177.
  • [19] J. Rashidinia, T. Eftekhari, and K. Maleknejad, Numerical solutions of two-dimensional nonlinear fractional Volterra and Fredholm integral equations using shifted Jacobi operational matrices via collocation method, J. King. Saud. Univ. Sci., 33 (2021).
  • [20] J. Rashidinia and E. Mohmedi, Approximate solution of the multi-term time fractional diffusion and diffusionwave equations, Comp. Appl. Math., 39 (2020).
  • [21] J. Shen, T. Tang, and L. Wang, Spectral methods, Algorithms, analysis and applications, Springer, 2010.
  • [22] N. H. Sweilam, S. M. Ahmed, and M. Adel, A simple numerical method for two-dimensional nonlinear fractional anomalous sub-diffusion equations, Math. Method. Appl. Sci., 5 (2020), 2914–2933.
  • [23] I. Talib, F. Jarad, M. U. Mirza, A. Nawaz, and M. B. Riaz, A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations, Alex. Eng. J., 61 (2013), 135–145.
  • [24] L. Z. Wu, S. R. Zhu, and J. Peng, Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-induced landslides, Appl. Math. Model., 80 (2020), 408–425.
  • [25] C. Yang and J. Hou, Jacobi spectral approximation for boundary value problems of nonlinear fractional pantograph differential equations, Numer. Algor., 86 (2021), 1089–1108.
  • [26] X. J. Yang, General Fractional Derivatives: Theory, Methods and Applications, CRC Press Taylor & Francis Group, 2019.
  • [27] X. Yu, L. Li, and Z. Wang, Efficient space-time Legendre rational spectral method for parabolic problems in unbounded domains, Appl. Numer. Math., 170 (2021), 39–54.
  • [28] M. A. Zaky, A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comp. Appl. Math., 37 (2018), 3525–3538.
  • [29] M. Zayernouri and G. Karniadakis, Fractional spectral collocation method, SIAM J. Sci. Comput., 36 (2014), 40–62.
  • [30] B. Zhang, W. Bu, and A. Xiao, Efficient difference method for time-space fractional diffusion equation with Robin fractional derivative boundary condition, Numer. Algor., 88 (2021), 1965–1988.
  • [31] T. Zhang, H. Li, and Z. Wang, Efficient space-time Jacobi rational spectral methods for second order timedependent problems on unbounded domains, Appl. Numer. Math., 176 (2022), 159–181.
  • [32] M. Zheng, Z. Jin, F. Liu, and V. Anh, Matrix transfer technique for anomalous diffusion equation involving fractional Laplacian, Appl. Numer. Math., 172 (2022), 242–258.