Eigenvalue intervals of parameters for iterative systems of nonlinear Hadamard fractional boundary value problems

Document Type : Research Paper

Authors

1 Department of Mathematics, MVGR College of Engineering(Autonomous), Vizianagaram, 535005, India.

2 Department of Mathematics, Chegg India Pvt. Ltd., Visakhapatnam, 530002, Andhra Pradesh, India.

3 Department of Applied Mathematics, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India.

Abstract

This study uses a classic fixed point theorem of cone type in a Banach space to identify the eigenvalue intervals of parameters for which an iterative system of a Hadamard fractional boundary value problem has at least one positive solution. To the best of our knowledge, no attempt has been made to obtain such results for Hadamard-type problems in the literature. We provided an example to illustrate the feasibility of our findings in order to show how effective they are. 

Keywords

Main Subjects


  • [1] S. Abbas, N. A. Arifi, M. Benchohra, J. Henderson, Coupled Hilfer and Hadamard random fractional differential systems with finite delay in generalized Banach spaces, Differ. Equ. Appl., 12 (2020), 337–353.
  • [2] B. Ahmad, A. Alsaedi, S. K. Ntouyas, and J. Tariboon, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham, 2017.
  • [3] G. Alotta, E. Bologna, G. Failla, and M. Zingales, A Fractional Approach to Non-Newtonian Blood Rheology in Capillary Vessels, J. Peridyn Nonlocal Model, 1 (2019), 88–96.
  • [4] M. Benchohra, F. Berhoun, S. Hamani, J. Henderson, S. K. Ntouyas, A. Ouahab, and I. K. Purnaras, Eigenvalues for iterative systems of nonlinear boundary value problems on time scales, Nonlinear Dyn. Syst. Theory, 9(1) (2009), 11–22.
  • [5] P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27.
  • [6] P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15.
  • [7] K. Demling, Nonlinear Functional Analysis, Springer, New York, 1985.
  • [8] Y. Ding, J. Jiang, D. O’Regan, and J. Xu, Positive solutions for a system of Hadamard-type fractional differential equations with semipositone nonlinearities, Complexity, 2020 (2020), Article ID 9742418, 1–14.
  • [9] E. Egri, A boundary value problem for a system of iterative functional-differential equations, Carpathian J. Math., 24(1) (2008), 23–36.
  • [10] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, 1988.
  • [11] E. F. D. Goufo, A biomathematical view on the fractional dynamics of cellulose degradation, Fract. Calc. Appl. Anal., 18(3) (2015), 554–564.
  • [12] J. Hadamard, Essai sur letude des fonctions donnes par leur developpement de Taylor, J. Mat. Pure et Appl., Sr. 4, 8 (1892), 101–186.
  • [13] M. Khuddush, Existence of solutions to the iterative system of nonlinear two-point tempered fractional order boundary value problems, Adv. Studies: Euro-Tbilisi Math. J., 16(2) (2023), 97–114.
  • [14] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204.
  • [15] A. A. Kilbas and J. J. Trujillo, Hadamard-type integrals as G-transforms, Integral Transforms Spec. Funct., 14 (2003), 413–427.
  • [16] A. A. Kilbas, H. M. Srivasthava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 204 (2006).
  • [17] A. N. Kochubei, Y. F. Luchko, V. E. Tarasov, and I. Petras, Handbook of fractional calculus with applications, Applications in Physics part A., De Gruyter, 2019.
  • [18] A. N. Kochubei, Y. F. Luchko, V. E. Tarasov, and I. Petras, Handbook of fractional calculus with applications, Applications in Physics part B., De Gruyter, 2019.
  • [19] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
  • [20] B. M. B. Krushna, Eigenvalues for iterative systems of Riemann–Liouville type p-Laplacian fractional-order boundary-value problems in Banach spaces, Comput. Appl. Math., 39 (2020), 1–15.
  • [21] R. Y. Ma, Multiple nonnegative solutions of second order systems of boundary value problems, Nonlin. Anal. 42 (2000), 1003–1010.
  • [22] M. M. Matar, J. Alzabut, and J. J. Mohan, A coupled system of nonlinear Caputo-Hadamard Langevin equations associated with nonperiodic boundary conditions, Math. Methods Appl. Sci., 44 (2021), 2650–2670.
  • [23] I. Podulbny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [24] K. R. Prasad and B. M. B. Krushna, Solvability of p-Laplacian fractional higher order two-point boundary value problems, Commun. Appl. Anal., 19 (2015), 659–678.
  • [25] K. R. Prasad, B. M. B. Krushna, V. V. R. R. B. Raju, and Y. Narasimhulu, Existence of positive solutions for systems of fractional order boundary value problems with Riemann–Liouville derivative, Nonlinear Stud., 24 (2017), 619–629.
  • [26] K. R. Prasad, B. M. B. Krushna, and N. Sreedhar, Even number of positive solutions for the system of (p,q)Laplacian fractional order two-point boundary value problems, Differ. Equ. Dyn. Syst., 26 (2018), 315–330.
  • [27] K. R. Prasad, B. M. B. Krushna and L. T. Wesen, Existence results for positive solutions to iterative systems of four-point fractional-order boundary value problems in a Banach space, Asian-Eur. J. Math., 13 (2020), 1–17.
  • [28] M. Seghier, A. Ouahab, and J. Henderson, Random solutions to a system of fractional differential equations via the Hadamard fractional derivative, Eur. Phys. J. Spec. Top., 226 (2017), 3525–3549.
  • [29] H. H. Sherief and M. A. el-Hagary, Fractional order theory of thermo-viscoelasticity and application, Mech TimeDepend Mater., 24 (2020), 179–195.
  • [30] H. Sun, W. Chen, C. Li, and Y.Q. Chen, Fractional differential models for anomalous diffusion, Physica A: Statistical mechanics and its applications, 389 (2010), 2719–2724.
  • [31] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231.
  • [32] P. Thiramanus, S. K. Ntouyas, and J. Tariboon, Positive solutions for Hadamard fractional differential equations on infinite domain, Adv. Difference Equ., 2016 (2016), 1–18.
  • [33] K. Pei, G. T. Wang, and Y. Y. Sun, Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on infinite domain, Appl. Math. Comput., 312 (2017), 158–168.
  • [34] J. Tariboon, S. K. Ntouyas, S. Asawasamrit, and C. Promsakon, Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain, Open Math., 15 (2017), 645–666.
  • [35] G. T. Wang, K. Pei, R. P. Agarwal, L. H. Zhang, and B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230–239.
  • [36] W. Yang, Positive solutions for singular Hadamard fractional differential system with four-point coupled boundary conditions, J. Appl. Math. Comput., 49 (2015), 357–381.
  • [37] C. Zhai, W. Wang, and H. Li, A uniqueness method to a new Hadamard fractional differential system with four-point boundary conditions, J Inequal Appl 2018, 207 (2018).
  • [38] W. Zhang and W.B. Liu, Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval, Math. Methods Appl. Sci., 43 (2020), 2251–2275.
  • [39] C. Zhai and W. Wang, Solutions for a system of Hadamard fractional differential equations with integral conditions, Numer. Funct. Anal. Optim., 41 (2020), 209–229.
  • [40] W. Zhang and J. Ni, New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval, Appl. Math. Lett., 118 (2021), 1–10.