The presented paper investigates a new numerical method based on the characteristics of flatlet oblique multiwavelets for solving fractional Volterra integro-differential equations, in this method, first using the dual bases of the flatlet multiwavelets, the operator matrices are made for the derivative of fractional order and Volterra integral. Then, the fractional Volterra integro-differential equation reduces to a set of algebraic equations which can be easily solved. The error analysis and convergence of the presented method are discussed. Also, numerical examples will indicate the acceptable accuracy of the proposed method, which is compared with the methods used by other researchers.
[1] A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fractals, 40 (2009), 521–529.
[2] H. Adibi and A. M. Rismani, On using a modified Legendre-spectral method for solving singular IVPs of LaneEmden type, Comput. Math. Appl., 60 (2010), 2126–2130.
[3] B. Alpert, A class of basis in L2 for the sparse representation of integral operatorse, SIAM J. Math. Anal., 24(1), (1993), 246–262.
[4] B. Alpert, G. Beylkin, R. R. Coifman, and V. Rokhlin, Wavelet-like basis for the fast solution of second-kind integral equations, SIAM J. Sci. Statist. Comput., 14(1), (1993), 159–184.
[5] C. M. Bender, K. A. Milton, S. S. Pinsky, and L. M. Simmons, A new perturbative approach to nonlinear problems. Journal of Mathematics and Physics, 30 (1989), 1447–1455.
[6] L. H. Cui and Z. X. Cheng, A method of construction for biorthogonal multiwavelets system with 2 multiplicity, Applied Mathematics and Computiation, 167 (2005), 901–918.
[7] W. Dahmen, B. Han, R. Q. Jia, and A. Kunoth, Biorthogonal multiwavelets on the interval, cubic Hermite spline, Constr. Approximation. 16(2) (2000), 221–259.
[8] M. R. Darani and S. Bagheri, Fractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations, Computational Methods for Differential Equations, 2 (2014), 286–282.
[9] M. R. Darani, H. Adibi, and M. Lakestani, Numerical solution of integrodifferential equations using flatlet oblique multiwavelets, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 17 (2010), 45–57.
[10] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math, 41 (1998), 909–996.
[11] I. Daubechies, Ten Lectures on Wavelets, in: CBMS-NSF Lecture Notes, vol. 61, SIAM. (1992).
[12] M. Dehgan, M. Shakourifar, and A. Hamidi, The solution of linear and nonlinear systems of Volterra functional equations using AdomianPade techniques, Chaos, Soliton Fract, 39 (2009), 2509–2521.
[13] A. A. Elbeleze, A. Klman, and M. T. Taib, Approximate solution of integro-differential equation of fractional (arbitrary) order, J. King Saud Univ., Sci, 28 (2016), 61–68.
[14] T. N. T. Goodman and S. L. Lee, Wavelets of multiplicity, Tranc. Amer. Math. Soc, 342 (1994), 307–324.
[15] J. C. Goswami, A. K. Chan, and C. K. Chui, On solving first-kind integral equations using wavelets on bounded interval, IEEE Trans. Antennas Propag., 43 (1995), 614–622.
[16] B. Han and Q. T. Jiang, Multiwavelets on the interval, Appl. Comput. Har- mon. Anal., 12 (2002), 100–127.
[17] C. H. Hsiao and W. J. Wang, Optimal control of linear time-varying systems via Haar wavelets, J. Optim. Theory Appl. 103(3), (1999), 641–655.
[18] S. Islam, I. Aziz, and M. Fayyaz, A new approach for numerical solution of integro-differential equations via Haar wavelets, Int. J. Comp. Math., 90(9) (2013), 1971–1989.
[19] S. Karimi Vanani and A. Aminataei, Operational tau approximation for a general class of fractional integrodifferential equations. Comput. Appl. Math., 30(3) (2011), 655-674.
[20] R. C. Mittal and R. Nigam, Solution of fractional integro-differential equations by Adomian decomposition method, Int. J. Adv. Appl. Math. Mech., 4(2) (2008), 87-94.
[21] K. Maleknejad, M. N. Sahlan, and A. Ostadi, Numerical solution of fractional integro-differential equation by using cubic B-spline wavelets, Proceedings of the World Congress on Engineering 2013, Vol. I, London, UK, 35 July 2013, (2013).
[22] M. Maleki and M. T. Kajani, Numerical approximations for Volterras population growth model with fractional order via a multi-domain pseudospectral method, Appl. Math. Model., 39, (2015), 4300–4308.
[23] X. Ma and C. Huang, Spectral collocation method for linear fractional integro-differential equations, Appl. Math. Model. 38, (2014), 1434–1448.
[24] Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order fractional integrodifferential equations, Comput. Math. Appl., 61 (2011), 2330–2341.
[25] K. Parand and M. Nikarya, Application of Bessel functions for solving differential and integro-differential equations of the fractional order, Appl. Math. Model., 38 (2014), 4137–4147.
[26] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).
[27] R. K. Pandey, S. Sharma, and K. Kumar, Collocation Method for Generalized Abels Integral Equations, J. Comput. Appl. Math., 302 (2016), 118–128.
[28] R. K. Pandey, S. Sharma, and K. Kumar, Collocation method with convergence for generalized fractional integrodifferential equations, J. Comput. Appl. Math., 30219 (2018), 377–427.
[29] H. Saaedi and M. Mohseni Moghadam, Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets. Commun, Nonlinear Sci. Numer. Simul., 16 (2011), 1216–1226.
[30] N. H. Sweilam and M. M. Khader, A Chebyshev pseudo-spectral method for solving fractional-order integrodifferential equations, ANZIAM J., 51 (2010), 464–475.
[31] M. H. Saleh, S. M. Amer, M. A. Mohamed, and N. S. Abdelrhman, Approximate solution of fractional integrodifferential equation by Taylor expansion and Legendre wavelets methods, CUBO 15(3) (2013), 89–103.
[32] P. K. Sahu and S. Saha Ray, A novel Legendre wavelet PetrovGalerkin method for fractional Volterra integrodifferential equations, Comput. Math. Appl., (2016), in press. https://doi.org/10.1016/j.camwa.2016.04.042.
[33] B. Turmetov and J. Abdullaev, Analytic solutions of fractional integro-differential equations of Volterra type, Int. J. Mod. Phys. Conf. Ser., 890 (2017), 012113.
[34] Y. Wang and L. Zhu, Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method, Adv. Differ. Equ., (2017), 2017:27.
[35] S. Y u¨zbas, A numerical approximation for Volterras population growth model with fractional order. Appl. Math. Model., 37 (2013), 3216–3227.
[36] Y. Yang, Y. Chen and Y. Huang Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations, Acta Math. Sci. Ser. B Engl. Ed., 34(3) (2014), 673–690.
[37] J. Zhao, J. Xiao, and N.J. Ford, Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer, Algorithms, 65 (2014), 723–743.
Shafinejhad, Z. and Zarebnia, M. (2024). Numerical solution of fractional Volterra integro-differential equations using flatlet oblique multiwavelets. Computational Methods for Differential Equations, 12(2), 374-391. doi: 10.22034/cmde.2023.56933.2382
MLA
Shafinejhad, Z. , and Zarebnia, M. . "Numerical solution of fractional Volterra integro-differential equations using flatlet oblique multiwavelets", Computational Methods for Differential Equations, 12, 2, 2024, 374-391. doi: 10.22034/cmde.2023.56933.2382
HARVARD
Shafinejhad, Z., Zarebnia, M. (2024). 'Numerical solution of fractional Volterra integro-differential equations using flatlet oblique multiwavelets', Computational Methods for Differential Equations, 12(2), pp. 374-391. doi: 10.22034/cmde.2023.56933.2382
CHICAGO
Z. Shafinejhad and M. Zarebnia, "Numerical solution of fractional Volterra integro-differential equations using flatlet oblique multiwavelets," Computational Methods for Differential Equations, 12 2 (2024): 374-391, doi: 10.22034/cmde.2023.56933.2382
VANCOUVER
Shafinejhad, Z., Zarebnia, M. Numerical solution of fractional Volterra integro-differential equations using flatlet oblique multiwavelets. Computational Methods for Differential Equations, 2024; 12(2): 374-391. doi: 10.22034/cmde.2023.56933.2382