This article presents a numerical treatment of the singularly perturbed delay reaction diffusion problem with an integral boundary condition. In the considered problem, a small parameter ", is multiplied on the higher order derivative term. The presence of this parameter causes the existence of boundary layers in the solution. The solution also exhibits an interior layer because of the large spatial delay. Simpson's 1/3 rule is applied to approximate the integral boundary condition given on the right end plane. A standard finite difference scheme on piecewise uniform Shishkin mesh is proposed to discretize the problem in the spatial direction, and the Crank-Nicolson method is used in the temporal direction. The developed numerical scheme is parameter uniformly convergent, with nearly two orders of convergence in space and two orders of convergence in time. Two numerical examples are considered to validate the theoretical results.
[1] G. M. Amiraliyev, I. G. Amiraliyeva, and K. Mustafa, A numerical treatment for singularly perturbed diﬀerential equations with integral boundary condition, Appl. Math. Comput., 185 (2007), 574–582.
[2] A. R. Ansari, S. A. Bakr, and G. I. Shishkin, A parameter-robust finite diﬀerence method for singularly perturbed delay parabolic partial diﬀerential equations, J. Comput. Appl. Math., 205 (2007), 552–566.
[3] E. BM. Bashier and K. C. Patidar, A novel fitted operator finite diﬀerence method for a singularly perturbed delay parabolic partial diﬀerential equation, Appl. Math. Comput., 217 (2011), 4728–4739.
[4] A. Das and S. Natesan, Second-order uniformly convergent numerical method for singularly perturbed delay par- abolic partial diﬀerential equations, Int. J. Comput. Math, 95(2018), 490–510.
[5] H. G. Debela and G. F. Duressa, Exponentially fitted finite diﬀerence method for singularly perturbed delay diﬀerential equations with integral boundary condition, Int. j. eng. appl. sci., 11 (2019), 476–493.
[6] H .G. Debela and G. F. Duressa, Accelerated fitted operator finite diﬀerence method for singularly perturbed delay diﬀerential equations with non-local boundary condition, J. Egyptian Math. Soc., em 28 (2020), 1–16.
[7] H. G. Debela and G. F. Duressa, Uniformly convergent numerical method for singularly perturbed convection- diﬀusion type problems with nonlocal boundary condition, Int J Numer Methods Fluids, 92 (2020), 1914–1926.
[8] H. G. Debela and G. F. Duressa, Fitted operator finite diﬀerence method for singularly perturbed diﬀerential equations with integral boundary condition, Kragujev. J. Math., 47 (2023), 637–651.
[9] W. T. Gobena and G. F. Duressa, Parameter uniform numerical methods for singularly perturbed delay parabolic diﬀerential equations with non-local boundary condition, Int. J. Eng. Sci. Technol., 13 (2021), 57-71.
[10] W. T. Gobena and G. F. Duressa, Fitted operator average finite diﬀerence method for singularly perturbed delay parabolic reaction diﬀusion problems with non-local boundary conditions, Tamkang J. Math., (2022).
[11] L. Govindarao and J. Mohapatra, Numerical analysis and simulation of delay parabolic partial diﬀerential equation involving a small parameter, Engrg. Comput., 37 (2019), 289-312.
[12] L. Govindarao, J. Mohapatra, and A. Das, A fourth-order numerical scheme for singularly perturbed delay para- bolic problem arising in population dynamics, J. Appl. Math. Comput., 63 (2020), 171–195.
[13] W. S. Hailu and G. F. Duressa, Parameter-uniform cubic spline method for singularly perturbed parabolic diﬀer- ential equation with large negative shift and integral boundary condition, Res. Math., 9 (2022), 2151080.
[14] D. Kumar and P. Kumari, A parameter-uniform collocation scheme for singularly perturbed delay problems with integral boundary condition, J. Appl. Math. Comput., 63(2020), 813–828.
[15] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. UralCeva, Linear and quasilinear equations of parabolic type, translations of mathematical monographs, Amer. Math. Soc. ( N.S. ), 23(1968), Providence RI, (1968).
[16] M. Manikandan, N. Shivaranjani, J. J. H. Miller, and S. Valarmathi, A parameter-uniform numerical method for a boundary value problem for a singularly perturbed delay diﬀerential equation, Adv. Appl. Math., Springer, 2014 (2014), 71–88.
[17] J. J. H. Miller, E. ORiordan, G. I. Shishkin, and L. P. Shishkina, Fitted mesh methods for problems with parabolic boundary layers, In Mathematical Proceedings of the Royal Irish Academy, JSTOR, (1998), 173–190.
[18] E. Sekar and A. Tamilselvan, Finite diﬀerence scheme for third order singularly perturbed delay diﬀerential equa- tion of convection diﬀusion type with integral boundary condition, J. Appl. Math. Comput., 61 (3019), 72–86.
[19] E. Sekar and A. Tamilselvan, Finite diﬀerence scheme for singularly perturbed system of delay diﬀerential equations with integral boundary conditions, J-KSIAM., 22 (2018), 201–215.
[20] E. Sekar and A. Tamilselvan, Singularly perturbed delay diﬀerential equations of convectiondiﬀusion type with integral boundary condition, J. Appl. Math. Comput., 9 (2019), 701–722.
[21] E. Sekar and A. Tamilselvan, Third order singularly perturbed delay diﬀerential equation of reaction diﬀusion type with integral boundary condition, J. Appl. Math. Comput. Mech., 18 (2019), 99-110.
[22] E. Sekar, A. Tamilselvan, R. Vadivel, N. Gunasekaran, H. Zhu, J. Cao, and X. Li, Finite diﬀerence scheme for singularly perturbed reaction diﬀusion problem of partial delay diﬀerential equation with nonlocal boundary condition, Adv. Diﬀerence Equ.,151 (2021), 1-20.
[23] P. A. Selvi and N. Ramanujam, A parameter uniform diﬀerence scheme for singularly perturbed parabolic delay diﬀerential equation with robin type boundary condition, Appl. Math. Comput., 296 (2017), 101–115.
[24] G. I. Shishkin, Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer. USSR, Comput. Math. Math. Phys., 29 (1989), 1–10.
[25] M. M. Woldaregay, W. T. Aniley, and G. F. Duressa, Novel numerical scheme for singularly perturbed time delay convection-diﬀusion equation, Adv. Math. Phys., 2021 (2021).
Wondimu, G. M., Dinka, T. G., Woldaregay, M., & Duressa, G. F. (2023). Fitted mesh numerical scheme for singularly perturbed delay reaction diffusion problem with integral boundary condition. Computational Methods for Differential Equations, 11(3), 478-494. doi: 10.22034/cmde.2023.49239.2054
MLA
Getu Mekonnen Wondimu; Tekle Gemechu Dinka; Mesfin Woldaregay; Gemechis File Duressa. "Fitted mesh numerical scheme for singularly perturbed delay reaction diffusion problem with integral boundary condition". Computational Methods for Differential Equations, 11, 3, 2023, 478-494. doi: 10.22034/cmde.2023.49239.2054
HARVARD
Wondimu, G. M., Dinka, T. G., Woldaregay, M., Duressa, G. F. (2023). 'Fitted mesh numerical scheme for singularly perturbed delay reaction diffusion problem with integral boundary condition', Computational Methods for Differential Equations, 11(3), pp. 478-494. doi: 10.22034/cmde.2023.49239.2054
VANCOUVER
Wondimu, G. M., Dinka, T. G., Woldaregay, M., Duressa, G. F. Fitted mesh numerical scheme for singularly perturbed delay reaction diffusion problem with integral boundary condition. Computational Methods for Differential Equations, 2023; 11(3): 478-494. doi: 10.22034/cmde.2023.49239.2054