A new application for numerical computations of the modified equal width equation (MEW) based on Lumped Galerkin method with the cubic B-spline

Document Type : Research Paper

Author

Department of Mathematics, Faculty of Science and Arts, Ağrı İbrahim Çeçen University, Ağrı, Turkey.

Abstract

In this paper, numerical computation of the modified equal width equation (MEW), which is one of the equations used to model nonlinear events, will be carried out. For this equation, numerical computations have been obtained by many researchers using different methods. The goal of the new approach is to check how well it performs with respect to the numerical calculations the researchers found. For this, the proposed study presents a Lie-Trotter splitting algorithm in accordance with the time-splitting technical rules combined with Lumped Galerkin FEM based on the basis function of the cubic B-spline. Two valid test examples are given to determine the validity and effectiveness of the current technique. The results obtained in a new way with the Matlab computational software are compared with the studies of other authors in the literature and are shown graphically. Based on these new results, it can clearly be stated that the benefit of the proposed approach is to demonstrate that reliability is achieved in obtaining approximate computations. 

Keywords


  • [1] A. Ba¸shan, N. M. Ya˘gmurlu, Y. U¸car, and A. Esen, A new perspective for the numerical solution of the Modified Equal Width wave equation, Math. Meth. Appl. Sci.,44 (2021), 8925–8939. https://doi.org/10.1002/mma.7322.
  • [2] A. Ba¸shan, Single Solitary Wave and Wave Generation Solutions of the Regularised Long Wave (RLW) Equation, GU. J. Sci; 35(4) (2022), 1597-1612.DOI: 10.35378/gujs.892116.
  • [3] A. Ba¸shan and N. M. Ya˘gmurlu, A mixed method approach to the solitary wave, undular bore and boundary-forced solutions of the Regularized Long Wave equation, Computational and Applied Mathematics, 41(169) (2022). https://doi.org/10.1007/s40314-022-01882-7.
  • [4] A. Ba¸shan, A novel outlook to the an alternative equation for modelling shallow water wave: Regularised Long Wave (RLW) equation, Indian J Pure Appl Math.,(2022), https://doi.org/10.1007/s13226-022-00239-4.
  • [5] A. Ba¸shan, N. M. Ya˘gmurlu, Y. U¸car, and A. Esen, Finite difference method combined with differential quadrature method for numerical computation of the modified equal width wave equation, Numer. Methods Partial Differ. Equations., 37 (2009), 690-706. https://doi.org/10.1002/num.22547.
  • [6] R. J. Cheng and K. M. Liew, Analyzing modified equal width (MEW) wave equation using the improved element- free Galerkin method, Eng. Anal. Boundary Elem.,36 (2012), 1322–1330.
  • [7] I. C¸ elikkaya, Operator splitting method for numerical solution of modified equal width equation, Tbilisi Math. J., 12 (2019), 51–67. https://doi.org/10.1016/j.enganabound.2012.03.013
  • [8] Y.Dereli, Radial basis functions method for numerical solution of the modified equal width equation, Int J Comp Math., 87(7) (2010), 1569-1577. https://doi.org/10.1080/00207160802395908
  • [9] M. Dehghan and M. Lakestani, The use of cubic B-spline scaling functions for solving the one-dimensional hyperbolic equation with a nonlocal conservation condition, Numerical methods for Partial Differential Equations, 23(6) (2007), 1277-1289. DOI 10.1002/num.20209.
  • [10] D. J. Evans and K. R. Raslan, Solitary waves for the generalized equal width (GEW) equation, Int. J. Comput., Math. 82(4) (2005), 445–455. https://doi.org/10.1080/0020716042000272539
  • [11] A. Esen, A lumped Galerkin method for the numerical solution of the modified equal-width wave equation using quadratic B-splines, Int. J. Comput. Math., 83(5-6) (2006), 449–459. https://doi.org/10.1080/00207160600909918
  • [12] A. Esen and S. Kutluay, Solitary wave solutions of the modified equal width wave equation, Commun. Non linear Sci. Numer. Simul., 13(3) (2008), 1538–1546. https://doi.org/10.1016/j.cnsns.2006.09.018
  • [13] Y. M. A. Essa, Multigrid method for the numerical solution of the modified equal width wave equation, Appl. Math., 7(2016), 1140–1147.DOI: 10.4236/am.2016.710102.
  • [14] L. R. T. Gardner and G. A. Gardner, Solitary waves of the EWE equation, J. Comput. Phys., 101 (1992), 218–223.
  • [15] T. Geyikli and S. B. G. Karako¸c, Subdomain Finite Element Method with Quartic B Splines for the Modified Equal Width Wave Equation, Zh. Vychisl. Mat. Mat. Fiz., 55(3) (2015), 410-421.
  • [16] T. Geyikli and S. B. G. Karako¸c, Petrol–Galerkin method with cubic B-splines for solving the MEW equation, Bull. Belg. Math. Soc., Simon Stevin 19(2012), 215–227
  • [17] S. Hamdi, W. H. Enright, W. E. Schiesserand, and J. J. Gottlieb, Exact solutions of the generalized equal width wave equation, In Proceedings of the International Conference on Computational Science and its Applications., (Springer-Verlag) (2003), 725-734.
  • [18] H. Holden et al., Splitting methods for partial differential equations with rough solutions, European Mathematical Society, Publishing House, Zu¨rich, 2010.
  • [19] L. Jin, Analytical Approach to the Modified Equal Width Equation, Int. J. Contemp. Math. Sciences., 4(23) (2009), 1113 -1119.
  • [20] S. B. G. Karako¸c and T. Geyikli, Numerical solution of the modified equal width wave equation, Int. J. Diff.Equations., (2012), 1–15. DOI: 10.1155/2012/587208
  • [21] S. B. G. Karako¸c and T. Geyikli, A numerical solution of the MEW equation using sextic B-splines, J. Adv. Res. Appl. Math., 5 (2013), 51–65. DOI: 10.5373/jaram.1542.091012
  • [22] S. B. G. Karako¸c, Y. U¸car, and N. M. Ya˘gmurlu, Different linearization techniques for the numerical solution of the MEW equation, Sel¸cuk J. Appl., Math., 13(2) (2012), 43-62.
  • [23] J. Lu, He’s variational iteration method for the modified equal width equation, Chaos, Solitons and Fractals., 39(5) (2007), 2102–2109. DOI: 10.1016/j.chaos.2007.06.104.
  • [24] M. Lakestani and M. Dehghan, Numerical solution of Fokker-Planck equation using the cubic B-spline scaling functions, Numerical methods for Partial Differential Equations, 25(2) (2009), 418-429. DOI:10.1002/num.20352.
  • [25] P. J. Morrison, J. D. Meiss, and J. R. Carey, Scattering of Regularized-Long-Wave Solitary Waves, Physica D: Nonlinear Phenomena., 11 (1984),324–336.https://doi.org/10.1016/0167-2789(84)90014-9
  • [26] P. J. Olver, Euler operators and conservation laws of the BBM equation, Math Proc. Camb. Phil. Soc., 85 (1979), 143-160.
  • [27] P. M. Prenter, Splines and variational methods, John Wiley, New York, NY, 1975.
  • [28] G. D. Smith, Numerical solutions of partial differential equations:    Finite difference methods, Clarendon Press,Oxford, 1985.
  • [29] K. R. Raslan, M. A. Ramadan, and I. G. Amıen, Finite difference approximations for the modified equal width wave (MEW) equation. J. Math Comput Sci., 4(5) (2014), 940-957.
  • [30] T. Roshan, A Petrov-Galerkin method for solving the generalized equal width (GEW) equation, . Comput. Appl. Math., 235(6) (2011), 1641–1652.https://doi.org/10.1016/j.cam.2010.09.006
  • [31] N. Taghizadeh, M. Mirzazadeh, A. S. Paghaleh, and J. Vahidi, Exact solutions of nonlinear evolu- tion equations by using the modified simple equation method, Ain Shams Eng J., 3 (2012), 321-325. https://dx.doi.org/10.1016/j.asej.2012.03.010
  • [32] A. M. Wazwaz, The tanh and the sine-cosine methods for a reliable treatment of the modi- fied equal width equation and its variants, Commun. Nonlinear Sci. Numer. Simul., 11(2) (2006), 148–160.https://doi.org/10.1016/j.cnsns.2004.07.001
  • [33] H. Wang, L. Chen, and H.Wang, Exact travelling wave solutions of the modified equal width equation via the dynamical system method, Nonlin. Anal. Diff. Eq., 4(1) (2016), 9-15. https://dx.doi.org/10.12988/nade.2016.5824
  • [34] N. M. Ya˘gmurlu and A. S. Karaka¸s, A novel perspective for simulations of the MEW equation by trigonometric cu- bic B-spline collocation method based on Rubin-Graves type linearization, Computational Methods for Differential Equations.,(2021), 1-14. http://cmde.tabrizu.ac.ir.DOI:10.22034/cmde.2021.47358.1981.
  • [35] S. I. Zaki, A least-squares Finite element scheme for the EW equation, Comput. Methods Appl. Mech. Engrg., 189 (2000), 587-594.https://doi.org/10.1016/S0045-7825(99)00312-6.
  • [36] H. Zadvan and J. Rashidinia, Development of non polynomial spline and New B-spline with application to solution of Klein-Gordon equation, Computational Methods for Differential Equations, 8(4) (2020), 794-814. DOI:10.22034/cmde.2020.27847.1377.