A robust numerical scheme for singularly perturbed delay parabolic initial-boundary-value problems involving mixed space shifts

Document Type : Research Paper

Authors

1 Department of Mathematics and Humanities, Kakatiya Institute of Technology and Science, Warangal, India.

2 Department of Mathematics, National Institute of Technology Rourkela, Odisha, India.

Abstract

This article proposes a parameter uniform numerical method for solving a singularly perturbed delay parabolic initial boundary-value problem involving mixed space shifts. The model also involves a large delay in time. Taylor’s series expansion is applied to approximate the retarded terms in the spatial direction. For the time discretization, the implicit trapezoidal scheme is applied on uniform mesh, and for the spatial discretization, we use a proper combination of the mid-point upwind and the central difference scheme on Shishkin mesh. The proposed scheme provides a second-order convergence rate uniformly with respect to the perturbation parameter. Some comparison results are presented by using the proposed method to support our claim.

Keywords


  • [1] K. Bansal and K. K. Sharma, Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments, Numer. Algorithms, 75(1) (2017), 113-145.
  • [2] I. T. Daba and G. F. Duressa, Collocation method using artificial viscosity for time dependent singularly perturbed differential-difference equations, Math. Comput. Simulation, (2021).
  • [3] P. Farrell, A. Hegarty, J. M. Miller, E. O’Riordan, and G. I. Shishkin, Robust computational techniques for boundary layers, CRC Press, 2000
  • [4] L. Govindarao, S. R. Sahu, and J. Mohapatra, Uniformly convergent numerical method for singularly perturbed time delay parabolic problem with two small parameters, Iran. J. Sci. Technol. Trans. A Sci., 43(5) (2019), 2373-2383.
  • [5] L. Govindarao, J. Mohapatra, and A. Das, A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics, J. Appl. Math. Comput., 63(1) (2020), 171-195.
  • [6] L. Govindarao and J. Mohapatra, A second order numerical method for singularly perturbed delay parabolic partial differential equation, Eng Comput., 36(2) (2019), 420-444.
  • [7] L. Govindarao and J. Mohapatra, Numerical analysis and simulation of delay parabolic partial differential equation involving a small parameter, Eng Comput., 37(1) (2020), 289-312.
  • [8] D. Kumar and M. K. Kadalbajoo, A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations, Appl. Math. Model., 35(6) (2011), 2805-2819.
  • [9] K. Kumar, P. P. Chakravarthy, H. Ramos, and J. Vigo-Aguiar, A stable finite difference scheme and error estimates for parabolic singularly perturbed PDEs with shift parameters, J. Comput. Appl. Math., (2020), 113050.
  • [10] C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations, SIAM J. Appl. Math., 42(3), (1982), 502-531.
  • [11] C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. V. Small shifts with layer behavior, SIAM J. Appl. Math., 54(1) (1994), 249-272.
  • [12] J. Mohapatra and S. Natesan, The parameter-robust numerical method based on defect-correction technique for singularly perturbed delay differential equations with layer behavior, Int. J. Comput. Methods, 7(4) (2010), 573-594.
  • [13] P. Mushahary, S. R. Sahu, and J. Mohapatra, A parameter uniform numerical scheme for singularly perturbed differential-difference equations with mixed shifts, J. Appl. Math. Comput. Mech., 6(2) (2020), 344-356.
  • [14] P. C. Podila and K. Kumar, A new stable finite difference scheme and its convergence for time-delayed singularly perturbed parabolic PDEs, Comput. Appl. Math., 5(5) (2020), 1-16.
  • [15] V. P. Ramesh and B. Priyanga, Higher order uniformly convergent numerical algorithm for time-dependent singularly perturbed differential-difference equations, Differ. Equ. Dyn. Syst., 29(1) (2021), 239-263.
  • [16] R. N. Rao and P. P. Chakravarthy, A finite difference method for singularly perturbed differential-difference equations with layer and oscillatory behavior, Appl. Math. Model., 37(8) (2013), 5743-5755.
  • [17] N. R. Reddy and J. Mohapatra, An efficient numerical method for singularly perturbed two point boundary value problems exhibiting boundary layers, Nat. Acad. Sci. Lett., 38(4) (2015), 355-359.
  • [18] S. R. Sahu and J. Mohapatra, Parameter uniform numerical methods for singularly perturbed delay differential equation involving two small parameters, Int. J. Appl. Comput. Math., 5(5) (2019), 1-19.
  • [19] S. R. Sahu and J. Mohapatra, Numerical investigation of time delay parabolic differential equation involving two small parameters, Engineering Computations, 38(4) (2021), 2882-2899.
  • [20] S. R. Sahu and J. Mohapatra, Numerical study of time delay singularly perturbedparabolic differential equations involving both small positive and negative space shift, J. Appl. Anal., (2021), DOI: 10.1515/jaa-2021-2064
  • [21] P. K. C. Wang, Asymptotic stability of a time-delayed diffusion system, J. Appl. Mech., 30 (1963) 500–504.