Lie symmetries, exact solutions, and conservation laws of the nonlinear time-fractional Benjamin-Ono equation

Document Type : Research Paper


Department of Mathematics, Basic Science Faculty, University of Bonab, Bonab, Iran.


In this work, we use the symmetry of the Lie group analysis as one of the powerful tools that deals with the wide class of fractional order differential equation in the Riemann-Liouville concept. We employ the classical Lie symmetries to obtain similarity reductions of nonlinear time-fractional Benjamin-Ono equation and then, we find the related exact solutions for the derived generators. Finally, according to the Lie symmetry generators obtained, we construct conservation laws for related classical vector fields of time-fractional Benjamin-Ono equation.


  • [1]         M. R. Ali, A truncation method for solving the time-fractional Benjamin-Ono equation, Journal of Applied Math- ematics, (2019), DOI:10.1155/2019/3456848.
  • [2]         T. Bakkyaraj and R. Sahadevan, Invariant analysis of nonlinear fractional ordinary differential equations with Riemann–Liouville fractional derivative, Nonlinear Dynamics, 80(1-2) (2015), 447–455.
  • [3]         A. Biswas, Y. Yıldırım, E. Y Ya¸sar, and M. M. Babatin, Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF, Optik, 148 (2017), 209–214.
  • [4]         A. Biswas, E. Y. Ya¸sar, Y. Yıldırım, H. Triki, Q. Zhou, S. P. Moshokoa, and M. Belic, Conservation laws for perturbed solitons in optical metamaterials, Results in physics, 8 (2018), 898–902.
  • [5]         G. Bluman and S. Anco, Symmetry and integration methods for differential equations, Springer Science & Business Media, 154 (2008).
  • [6]         E. Dastranj and H. Sahebi Fard, Exact solutions and numerical simulation for Bakstein–Howison model, Com- putational Methods for Differential Equations, (2021), 1–17, DOI:10.22034/cmde.2021.42640.1834.
  • [7]         A. S. Fokas and B. Fuchssteiner, The hierarchy of the Benjamin-Ono equation, Physics letters A, 86 (1981), 341–345.
  • [8]         P. G´erard and T. Kappeler, On the Integrability of the Benjamin–Ono Equation on the Torus, Communications on Pure and Applied Mathematics, 74 (2021), 1685–1747.
  • [9]         M. S. Hashemi and D. Baleanu, Lie Symmetry Analysis of Fractional Differential Equations, Chapman and Hall/CRC, 2020.
  • [10]       M. S. Hashemi, M.In¸c, and M. Bayram, Symmetry properties and exact solutions of the time-fractional Kolmogorov–Petrovskii–Piskunov equation, Revista mexicana de f´ısica, 65(5) (2019), 529–535.
  • [11]       N. H. Ibragimov, CRC handbook of Lie group analysis of differential equations, CRC press, 3 (1995).
  • [12]       N. H. Ibragimov, Nonlinear self-adjointness and conservation laws, J. Phys. A, 44 (2011).
  • [13]       N. H. Ibragimov, A new conservation theorem, Journal of Mathematical Analysis and Applications, 333 (2007), 311–328.
  • [14]       A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo Theory and applications of fractional differential equations, Elsevier, 204 (2006).
  • [15]       K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
  • [16]       M. Mirzazadeh, Y. Yıldırım, E. Ya¸sar, H. Triki, Q. Zhou, S. P. Moshokoa, M. Zaka Ullah, Aly R. Seadawy, A. Biswas, and M. Belic, Optical solitons and conservation law of Kundu-Eckhaus equation, Optik, 154 (2018), 551–557.
  • [17]       R. Najafi, Approximate nonclassical symmetries for the time–fractional KdV equations with the small parameter, Computational Methods for Differential Equations, 8(1) (2020), 111–118.
  • [18]       A. Neyrame, A. Roozi, S. S. Hosseini, and S. M. Shafiof, Exact travelling wave solutions for some nonlinear partial differential equations, Journal of King Saud University–Science, 22 (2010), 275–278.
  • [19]       K. Oldham and J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974.
  • [20]       P. J. Olver, Applications of Lie groups to differential equations, vol. 107, Springer Science & Business Media, (2000).
  • [21]       S. Singh, R. Sakthivel, M. Inc, A. Yusuf, and K. Murugesan, Computing wave solutions and conservation laws of conformable time-fractional Gardner and Benjamin–Ono equations, Pramana, 95 (2021), 43.
  • [22]       V. Shirvani and M. Nadjafikhah, Symmetry analysis and conservation laws for higher order Camassa–Holm equation, Computational Methods for Differential Equations, 8(2) (2020), 364–72.
  • [23]       O. Tasbozan, New analytical solutions for time fractional Benjamin-Ono equation arising internal waves in deep water, China Ocean Engineering, 33 (2019), 593–600.
  • [24]       G. W. Wang and M. S. Hashemi, Lie symmetry analysis and soliton solutions of time-fractional k(m,n) equation, Pramana, 88(1) (2017), 1–6.
  • [25]       H. Yang, J. Sun, and C. Fu, Time-fractional Benjamin-Ono equation for algebraic gravity solitary waves in baroclinic atmosphere and exact multi-soliton solution as well as interaction, Communications in Nonlinear Science and Numerical Simulation, 71 (2019), 187–201.
  • [26]       Y. Yıldırım and E. Ya¸sar, A (2+ 1)-dimensional breaking soliton equation: Solutions and conservation laws, Chaos, Solitons & Fractals, 107 (2018), 146–155.
  • [27]       E. Ya¸sar and Y. Yıldırım, On the Lie symmetry analysis and traveling wave solutions of time–fractional fifth–order modified Sawada–Kotera equation, Karaelmas Science and Engineering Journal, 8(2) (2018), 411–416.
  • [28]       E. Ya¸sar and Y. Yıldırım, Symmetries and conservation laws of evolution equations via multiplier and nonlocal conservation methods, New Trends in Mathematical Sciences, 5(1) (2017), 128–136.
  • [29]       E. Ya¸sar, Y. Yıldırım, and C. M. Khalique, Lie symmetry analysis, conservation laws and exact solutions of the seventh–order time-fractional sawada–kotera–ito equation, Results in physics, 6 (2016), 322–328.