Some new soliton solutions for the nonlinear the fifth-order integrable equations

Document Type : Research Paper

Authors

1 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

2 Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.

3 Department of Mathematics, University of Bonab, Bonab, Iran.

Abstract

‎In this work‎, ‎we established some exact solutions for the‎ $(1+1)$-dimensional and $(2+1)$-dimensional fifth-order integrable‎ equations ($(1+1)$D and $(2+1)$D FOIEs) which is considered based on‎ the improved $\tanh(\phi(\xi)/2)$ expansion method (IThEM)‎, ‎by‎ utilizing Maple software‎. ‎We obtained new periodic solitary wave‎ ‎solutions‎. ‎The obtained solutions include soliton‎, ‎periodic‎, ‎kink‎, kink-singular wave solutions‎. ‎Comparing our new results with Wazwaz‎ results‎, ‎namely‎, ‎the Hereman-Nuseri method shows that our results give‎ further solutions‎. ‎Many other such types of nonlinear equations‎ arise in fluid dynamics‎, ‎plasma ‎physics,‎ and nonlinear physics‎.

Keywords


  • [1]          M. F. Aghdaei and J. Manafian, Optical soliton wave solutions to the resonant Davey-Stewartson system, Opt. Quant. Elec., 48 (2016), 1-33.
  • [2]          H. M. Baskonus, H. Bulut, and A. Atangana, On the complex and hyperbolic structures of longitudinal wave equation in a magneto-electro-elastic circular rod, Smart Materials and Structures, 25 (2016), 035022.
  • [3]          H. M. Baskonus and H. Bulut, New wave behaviors of the system of equations for the ion sound  and  Langmuir  Waves, Waves in Random and Complex Media, (2016) doi.org/10.1080/17455030.2016.1181811.
  • [4]          H. M. Baskonus and H. Bulut, Exponential prototype  structures  for  (2+1)-dimensional  Boiti-Leon-Pempinelli systems in mathematical physics, Waves in Random and Complex Media, 26 (2016), 201-208.
  • [5]          H. M. Baskonus, D. A. Koç, and H. Bulut, New travelling wave prototypes to the nonlinear Zakharov-Kuznetsov equation with power law nonlinearity, Nonlinear Sci. Lett. A, 7 (2016), 67-76.
  • [6]          A. Biswas, M. Ekici, A. Sonmezoglu, F. B. Majid, H. Triki, Q. Zhou, S. P. Moshokoa, and M. Belic, Optical soliton perturbation for Gerdjikov-Ivanov equation by extended trial equation method, Optik 158 (2018), 747-752.
  • [7]          A. Biswas, M. Ekici, A. Sonmezoglu, H. Triki, Q. Zhou, S. P. Moshokoa, and M. Belic, Dispersive optical solitons with differential group delay by extended trial equation method, Optik, 158 (2018), 790-798.
  • [8]          H. Bulut and H. M. Baskonus, New complex  hyperbolic  function  solutions  for  the  (2+1)-dimensional  dispersive long water-wave system, Math. Comput. Appl., 21 (2016), 6.
  • [9]          Y. Chen and Q. Wang, Extended Jacobi elliptic function rational expansion method and abundant families of  Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation, Chaos Solitons Fract., 24 (2005), 745-757.
  • [10]        M. Dehghan and J. Manafian, The solution of the variable coefficients fourth–order parabolic partial differential equations by homotopy perturbation method, Z. Naturforsch, 64a (2009), 420-430.
  • [11]        M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional  partial  differential  equations  using the homotopy analysis method, Num. Meth. Partial Diff.l Eq. J., 26 (2010), 448-479.
  • [12]        M. Dehghan, J. Manafian, and A. Saadatmandi, Application of semi–analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl. Sci., 33 (2010), 1384-1398.
  • [13]        M. Dehghan, J. Manafian, and A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int J. Num. Methods Heat Fluid Flow, 21 (2011), 736-753.
  • [14]        M. Ekici, Q. Zhou, A. Sonmezoglu, J. Manafian, and M. Mirzazadeh, The analytical study of solitons to the nonlinear Schrödinger equation with resonant nonlinearity, Optik, 130 (2017), 378-382.
  • [15]        M. R. Foroutan, J. Manafian, and A. Ranjbaran, Lump solution and its interaction to (3+1)-D potential-YTSF equation, Nonlinear Dyn., 92 (2018), 2077-2092.
  • [16]        A. J. M. Jawad, M. J. A. AlShaeer, F. B. Majid, A. Biswas, Q. Zhou, and M. Belic, Optical soliton perturbation with exotic non-Kerr law nonlinearities, Optik, 158 (2018), 1370-1379.
  • [17]        A. J. M. Jawad, M. D. Petković, and A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869-877.
  • [18]        J. Manafian, On the complex structures of the Biswas-Milovic equation for power, parabolic  and dual parabolic law nonlinearities, Eur. Phys. J. Plus, 130 (2015), 1-20.
  • [19]        J. Manafian, Optical soliton solutions for Schrödinger type nonlinear evolutionequations by the tan(ϕ/2)-expansion method, Optik, 127 (2016), 4222-4245.
  • [20]        J. Manafian and M. F. Aghdaei, M, Zadahmad, Analytic study of sixth-order thin-film equation by tan(ϕ/2)- expansion method, Opt. Quant. Elec., 48 (2016), 1-16.
  • [21]        J. Manafian, M. Lakestani, and A. Bekir, Comparison between the generalized tanh-coth and the G′/G-expansion methods for solving NPDEs and NODEs, Pramana-J. Phys., 87 (95), (2016) 1-14.
  • [22]        J. Manafian, M. Lakestani, and A. Bekir, Study of the analytical treatment of the (2+1)-dimensional Zoomeron, the Duffing and the SRLW equations via a new analytical approach, Int. J. Appl. Comput. Math., 2 (2016), 243-268.
  • [23]        J. Manafian and M. Lakestani, A new analytical approach to solve some the fractional-order partial differential equations, Indian J. Phys., 90 (2016), 1-16.
  • [24]        J. Manafian and M. Lakestani, Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity, Eur. Phys. J. Plus, 130 (2015), 1-12.
  • [25]        J. Manafian and M. Lakestani, Application of tan(ϕ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127 (2016), 2040-2054.
  • [26]        J. Manafian and M. Lakestani, Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics, Opt. Quant. Elec., 48 (2016), 1-32.
  • [27]        J. Manafian and M. Lakestani, New improvement of the expansion methods for solving the generalized Fitzhugh- Nagumo equation with time-dependent coefficients, Int. J. Eng. Math., 2015 (2015), 1-35.
  • [28]        J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu Eckhaus equation via tan(ϕ/2)-expansion method, Optik, 127 (2016), 5543-5551.
  • [29]        J. Manafian and M. Lakestani, Optical soliton solutions for the Gerdjikov Ivanov model via  tan(ϕ/2)-expansion method, Optik, 127 (2016), 9603-9620.
  • [30]        J. Manafian, M. Lakestani, and A. Bekir, Application of a new analytical method for the Richards’ equation, based on the Brooks and Corey model, J. Porous Media, 19(11) (2016), 975-991.
  • [31]        J. Manafian and M. Lakestani, Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the G′/G-expansion method, Pramana- J. Phys., 130 (2015), 31-52.
  • [32]        J. Manafian, M. Lakestani, and A. Bekir, Comparison between the generalized tanh-coth and the G′/G-expansion methods for solving NPDE’s and NODE’s, Pramana . J. Phys., 87 (2016), 1-14.
  • [33]        A. Qawasmeh and M. Alquran, Reliable study of some new fifth-order nonlinear equations by means of G’/G expansion method and rational sine-cosine method, Appl. Math. Sci., 8 (2014), 5985-5994.
  • [34]        A. M. Wazwaz, A new fifth order nonlinear integrable equation: multiple soliton solutions, Physica Scripta, 83 (2011), 015012.
  • [35]        A. M. Wazwaz, A new generalized fifth order nonlinear integrable equation, Physica Scripta, 83 (2011), 035003.
  • [36]        A. M. Wazwaz, Kink solutions for three new fifth order nonlinear equations, Appl. Math. Model., 38 (2014), 110-118.
  • [37]        A. M. Wazwaz, Couplings of a fifth order nonlinear integrable equation: Multiple kink solutions, Computers Fluids, 84 (2013), 97-99.
  • [38]        A. M. Wazwaz and A. Ebaid, A study on couplings of the fifth-order integrable Sawada-Kotera and Lax equations, Rom. J. Phys., 59 (2014), 454-465.
  • [39]        X. Zhao, L. Wang, and W. Sun, The repeated homogeneous balance method and its applications to  nonlinear partial differential equations, Chaos Solitons Fract., 28 (2006), 448-453.
  • [40]        Q. Zhou, M. Ekici, A. Sonmezoglu, J. Manafian, S. Khaleghizadeh, and M. Mirzazadeh, Exact solitary wave solutions to the generalized Fisher equation, Optik, 127 (2016), 12085-12092.