In this paper, we first establish two new identities for differentiable function involving generalized fractional integrals. Then, by utilizing these equalities, we obtain some midpoint type inequalities involving generalized fractional integrals for mappings whose derivatives in absolute values are convex. We also give several results as special cases of our main results.
[1] A. Abdeldaim, A. A. El-Deeb, P. Agarwal, and H. A. El-Sennary, On some dynamic inequalities of Steffensen type on time scales, Math. Methods Appl. Sci., 41(12) (2018), 4737-4753.
[2] P. Agarwal and J. E. Restrepo, An extension by means of ω-weighted classes of the generalized Riemann-Liouville k-fractional integral inequalities, J. Math. Ineq., 14 (1) (2020), 35-46.
[3] P. Agarwal, J. Tariboon, and S. K. Ntouyas, Some generalized Riemann-Liouville k-fractional integral inequalities, J. Inequal. Appl, 2016 (2016), 122.
[4] M. A. Ali, H. Budak, and I. B. Sial, Generalized fractional integral inequalities for product of two convex functions, Italian J. Pure Appl. Math., 45 (2021), 689698.
[5] M. A. Ali, H. Budak, M. Abbas, M. Z. Sarikaya, and A. Kashuri, Hermite-Hadamard type inequalities for h-convex functions via generalized fractional integrals, J. Math. Extension, 14(4), (2020), 187-234.
[6] M. Alomari, M. Darus, and U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (1) (2010), 225–232.
[7] G. A. Anastassiou, General fractional Hermite–Hadamard inequalities using m-convexity and (s, m)-convexity, Frontiers in Time Scales and Inequalities, 237 (2016), 237-255.
[8] A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28 (1994), 7-12.
[9] H. Budak and P. Agarwal, New generalized midpoint type inequalities for fractional integral, Miskolc Math. Notes, 20 (2) (2019), 781–793.
[10] H. Budak, F. Ertu˘gral, and E. Pehlivan, Hermite-Hadamard type inequalities for twice differantiable functions via generalized fractional integrals, Filomat, 33 (15) (2019), 4967–4979.
[11] J. de la Cal, J. Carcamob, and L. Escauriaza, A general multidimensional Hermite-Hadamard type inequality, J. Math. Anal. Appl., 356 (2009), 659–663.
[12] H. Chen and U.N. Katugampola, Hermite–Hadamard and Hermite–Hadamard–Fej´er type inequalities for gener- alized fractional integrals, J. Math. Anal. Appl., 446 (2) (2017), 1274–1291.
[13] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. Online:[http://rgmia.org/papers/monographs/Master2.pdf].
[14] S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11 (5) (1998), 91–95.
[15] G. Farid, A. Ur Rehman, and M. Zahra, On Hadamard type inequalities for k-fractional integrals, Konurap J. Math., 4(2) (2016), 79–86.
[16] G. Farid; A. Ur Rehman and Q. Ul Ain, K-fractional integral inequalities of Hadamard type for ( h m)-convex functions, Comput. Methods Differ. Equ., 8 (1) (2020), 119-140.
[17] M. Iqbal, M.I. Bhatti, and K. Nazeer, Generalization of Inequalities Analogous to Hermite-Hadamard Inequality via Fractional Integrals, Bull. Korean Math. Soc., 52(3) (2015), 707716.
[18] I˙. I˙¸scan and S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Compt., 238 (1) (2014), 237-244.
[19] I˙. I˙¸scan, On generalization of different type integral inequalities for s-convex functions via fractional integrals, Math. Sci. Appl. E Notes, 2(1), 2014, 55-67.
[20] M. Jleli and B. Samet, On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function, J. Nonlinear Sci. Appl., 9 (3) (2016), 1252-1260.
[21] D. Kaur, P. Agarwal, M. Rakshit and M. Chand, Fractional calculus involving ( p, q)-mathieu type series, Appl. Math. Nonlinear Sci., 5 (2) (2020), 15-34.
[22] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2020), 65-70.
[23] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
[24] U. S. Kirmaci, I nequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (1) (2004), 137–146.
[25] X. Liu, L. Zhang, P. Agarwa,l and G. Wang, On some new integral inequalities of Gronwall–Bellman–Bihari type with delay for discontinuous functions and their applications, Indag. Math., 27 (1) (2016), 1-10.
[26] K. Mehrez and P. Agarwal, New Hermite–Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2020), 274-285.
[27] S. Mubeen and G. M Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7 (2) (2012), 89-94.
[28] M. A. Noor and M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, TJMM, 5 (2) (2013), 129-136.
[29] J.E. Peˇcari´c, F. Proschan, and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
[30] M. E. O¨ zdemir, M. Avcı-Ardı¸c, and H. Kavurmacı-O¨ nalan, Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals,Turkish J.Science, 1 (1) (2016), 28-40.
[31] M. E. O¨ demir, M. Avci, and E. Set, On some inequalities of Hermite–Hadamard-type via m-convexity, Appl. Math. Lett., 23 (9) (2010), 1065–1070.
[32] M. E. O¨ demir, M. Avci, and H. Kavurmaci, Hermite–Hadamard-type inequalities via (α, m)-convexity, Comput. Math. Appl., 61 (9) (2011), 2614–2620.
[33] S. Qaisar and S. Hussain, On Hermite-Hadamard type inequalities for functions whose first derivative absolute values are convex and concave, Fasc. Math., 58 (2017), 155–166.
[34] A. Saglam, M. Z. Sarikaya, and H. Yildirim, Some new inequalities of Hermite-Hadamard’s type, Kyungpook Math. J., 50 (3) (2010), 399-410.
[35] M. Z. Sarikaya and F. Ertu˘gral, On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47 (1) (2020), 193-213.
[36] M. Z. Sarikaya and H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2) (2016), 1049–1059.
[37] M. Z. Sarikaya, E. Set, H. Yaldiz, and N., Basak, Hermite -Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (9-10) (2013), 2403–2407.
[38] M. Z. Sarikaya and H. Budak, Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat, 30 (5) (2016), 1315–1326.
[39] M. Z. Sarikaya, A. Akkurt , H. Budak, M. E. Yildirim, and H. Yildirim, Hermite-Hadamard’s inequalities for conformable fractional integrals, Int. J. Optim. Control. Theor. Appl., 9 (1) (2019), 49-59.
[40] E. Set, M. E. Ozdemir, and M. Z. Sarikaya, New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications, Facta Universitatis, Ser. Math. Inform., 27 (1) (2012), 67-82.
[41] E. Set, M. Z. Sarikaya, M. E. Ozdemir, and H. Yildirim, The Hermite-Hadamard’s inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform., 10 (2) (2014), 69-83.
[42] E. Set, A. Ocak Akdemir, and F. Ozata, Gru¨ss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function, Appl. Comput. Math., 19 (3) (2020), 422-434.
[43] J. Wang, X. Li, M. Feˇckan, and Y. Zhou, Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92 (11) (2012), 2241–2253.
[44] J. Wang, X. Li, and C. Zhu, Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon Stevin, 20 (4) (2013), 655–666.
[45] M. F. Yassen, A. A. Attiya, and P. Agarwal, Subordination and Superordination properties for certain family of analytic functions associated with Mittag–Leffler function, Symmetry, 12 (10) (2020), 17-24.
[46] Y. Zhang and J. Wang, On some new Hermite-Hadamard inequalities involving RiemannLiouville fractional integrals, J. Inequal. Appl., 2013 (2013), 220.
Budak, H., Kara, H., & Kapucu, R. (2022). New midpoint type inequalities for generalized fractional integral. Computational Methods for Differential Equations, 10(1), 93-108. doi: 10.22034/cmde.2020.40684.1772
MLA
Huseyin Budak; Hasan Kara; Rabia Kapucu. "New midpoint type inequalities for generalized fractional integral". Computational Methods for Differential Equations, 10, 1, 2022, 93-108. doi: 10.22034/cmde.2020.40684.1772
HARVARD
Budak, H., Kara, H., Kapucu, R. (2022). 'New midpoint type inequalities for generalized fractional integral', Computational Methods for Differential Equations, 10(1), pp. 93-108. doi: 10.22034/cmde.2020.40684.1772
VANCOUVER
Budak, H., Kara, H., Kapucu, R. New midpoint type inequalities for generalized fractional integral. Computational Methods for Differential Equations, 2022; 10(1): 93-108. doi: 10.22034/cmde.2020.40684.1772