Existence of solution for nonlinear integral inclusions

Document Type : Research Paper

Author

Department of Mathematics, University of Kashan, Kashan, 87317-53153, Iran.

Abstract

In this paper, we prove the existence of solution of two nonlinear integral inclusions by using generalization of Krasnoselskii fixed point theorem for set-valued mappings. As an application, we prove the existence of solution of the boundary-valued problem of ordinary differential inclusion.

Keywords


  • [1]          C. Avramescu, A fixed point theorem for multivalued mapping, Electron. J. Qual. Theory Differ. Equ., 2004 (2004), 1–10.
  • [2]          C. Avramescu and C. Vladimirescu, Fixed point theorems of Krasnoselskii type in a space of continuous functions, Fixed Point Theory., 5 (2004), 181–195.
  • [3]          R. J. Aumann, Integrals of set valued functions, J. Math. Anal. Appl., 12 (1965), 1–12.
  • [4]          C. S. Barroso, Krasnoselskii’s fixed point theorem for weakly continuous maps, Nonlinear Anal., 55 (2003), 25–31.
  • [5]          C. S. Barroso and E. V. Teixeira, A topological and geometric approach to fixed points results for sum of operators and applications, Nonlinear Anal., 60 (2005), 625–650.
  • [6]          I. Basoc and T. Cardinali, A hybrid nonlinear alternative theorem and some hybrid fixed point theorems for multimaps, J. Fixed Point Theory Appl., 17 (2015), 413–424.
  • [7]          M. Biondini and T. Cardinali, Existence of Solutions for a Nonlinear Integral Equation via a Hybrid Fixed Point Theorem Results. Math., 71 (2017), 1259–1276.
  • [8]          M. Boriceanu, Krasnoselkii-type theorems for multivalued operators, Fixed Point Theory., 9 (2008), 35–45.
  • [9]          T.A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii Schaefer type, Math. Nachr., 189 (1998), 23–31.
  • [10]        B. C. Dhage, Multi-valued mappings and fixed points I, Nonlinear Funct. Anal. Appl., 10 (3) (2005), 359–378.
  • [11]        B. C. Dhage, Multi-valued mappings and fixed points II, Tamkang journal of mathematics., 37 (1) (2006), 27–46.
  • [12]        B. C. Dhage, Multi-valued operators and fixed point theorems in banach algebras I, Taiwanese journal of mathe- matics., 10 (4) (2006), 1025–1045.
  • [13]        S. Djebali, L. G´orniewicz, and A, Ouahab,  Solution  Sets  for  Differential  Equations  and  Inclusions, De Gruyter, Berlin, Germany, 2013.
  • [14]        S. Djebali and Z. Sahnoun, Nonlinear alternatives of Schauder and Krasnoselskii types with applications to Ham- merstein integral equations in L1 spaces, J. Differential Equations., 249 (2010), 2061–2075.
  • [15]        J. Garcia-Falset, Existence of fixed points for the sum of two operators, Math. Nachr., 12 (2010), 1726–1757.
  • [16]        J. Garcia-Falset, K. Latrach, E. Moreno-Ga´lvez, and M. A. Taoudi, Schaefer- Krasnoselskii fixed points theorems using a usual measure of weak noncompactness, J. Differential Equations., 352 (2012), 3436–3452
  • [17]        J.  Garcia-Falset  and  O.  Mun˜iz-Pe´rez,  Fixed  point  theory  for  1-set  contractive  and  pseudocontractive  mappings, Appl. Math. Comput., 219 (2013), 6843–6855.
  • [18]        B. D. Gelman, A Hybrid Fixed-Point Theorem for  Set-Valued  Maps, Mathematical Notes., 101 (6) (2017), 951–  959.
  • [19]        J. R. Graef, J. Henderson, and A. Ouahab, Multivalued versions of a Krasnoselskii-type fixed point theorem, J. Fixed Point Theory Appl., (2016).
  • [20]        L. G´orniewicz,  Topological  Fixed  Point  Theory  of  Multivalued  Mappings, Kluwer Acad. Pub- lishers,  Dordrecht, 1999.
  • [21]        S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Kluwer Aca- demic, 1997.
  • [22]        M. A. Krasnoselskii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl. Ser., 10 (2) (1958), 345–409.
  • [23]        D. ORegan, Fixed-point theory for the sum of two operators, Appl. Math. Lett., 9 (1996), 1–8.
  • [24]        A. Ouahab, Some perov’s and krasnoselskii type fixed point results and application, Communications in Applied Analysis., 19 (2015), 623–642.
  • [25]        A. Petru¸sel, Multivalued operators and fixed points. Pure Math. Appl., 9 (1998), 165–170.
  • [26]        K. Przes-lawski and L. E. Rybin´ski, Michael selection theorem under weak lower semicontinuity assumption, Proc. Amer. Math. Soc., 109 (1990), 537–543.