In this paper, we prove the existence of solution of two nonlinear integral inclusions by using generalization of Krasnoselskii fixed point theorem for set-valued mappings. As an application, we prove the existence of solution of the boundary-valued problem of ordinary differential inclusion.
[1] C. Avramescu, A fixed point theorem for multivalued mapping, Electron. J. Qual. Theory Differ. Equ., 2004 (2004), 1–10.
[2] C. Avramescu and C. Vladimirescu, Fixed point theorems of Krasnoselskii type in a space of continuous functions, Fixed Point Theory., 5 (2004), 181–195.
[3] R. J. Aumann, Integrals of set valued functions, J. Math. Anal. Appl., 12 (1965), 1–12.
[4] C. S. Barroso, Krasnoselskii’s fixed point theorem for weakly continuous maps, Nonlinear Anal., 55 (2003), 25–31.
[5] C. S. Barroso and E. V. Teixeira, A topological and geometric approach to fixed points results for sum of operators and applications, Nonlinear Anal., 60 (2005), 625–650.
[6] I. Basoc and T. Cardinali, A hybrid nonlinear alternative theorem and some hybrid fixed point theorems for multimaps, J. Fixed Point Theory Appl., 17 (2015), 413–424.
[7] M. Biondini and T. Cardinali, Existence of Solutions for a Nonlinear Integral Equation via a Hybrid Fixed Point Theorem Results. Math., 71 (2017), 1259–1276.
[8] M. Boriceanu, Krasnoselkii-type theorems for multivalued operators, Fixed Point Theory., 9 (2008), 35–45.
[9] T.A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii Schaefer type, Math. Nachr., 189 (1998), 23–31.
[10] B. C. Dhage, Multi-valued mappings and fixed points I, Nonlinear Funct. Anal. Appl., 10 (3) (2005), 359–378.
[11] B. C. Dhage, Multi-valued mappings and fixed points II, Tamkang journal of mathematics., 37 (1) (2006), 27–46.
[12] B. C. Dhage, Multi-valued operators and fixed point theorems in banach algebras I, Taiwanese journal of mathe- matics., 10 (4) (2006), 1025–1045.
[13] S. Djebali, L. G´orniewicz, and A, Ouahab, Solution Sets for Differential Equations and Inclusions, De Gruyter, Berlin, Germany, 2013.
[14] S. Djebali and Z. Sahnoun, Nonlinear alternatives of Schauder and Krasnoselskii types with applications to Ham- merstein integral equations in L1 spaces, J. Differential Equations., 249 (2010), 2061–2075.
[15] J. Garcia-Falset, Existence of fixed points for the sum of two operators, Math. Nachr., 12 (2010), 1726–1757.
[16] J. Garcia-Falset, K. Latrach, E. Moreno-Ga´lvez, and M. A. Taoudi, Schaefer- Krasnoselskii fixed points theorems using a usual measure of weak noncompactness, J. Differential Equations., 352 (2012), 3436–3452
[17] J. Garcia-Falset and O. Mun˜iz-Pe´rez, Fixed point theory for 1-set contractive and pseudocontractive mappings, Appl. Math. Comput., 219 (2013), 6843–6855.
[18] B. D. Gelman, A Hybrid Fixed-Point Theorem for Set-Valued Maps, Mathematical Notes., 101 (6) (2017), 951– 959.
[19] J. R. Graef, J. Henderson, and A. Ouahab, Multivalued versions of a Krasnoselskii-type fixed point theorem, J. Fixed Point Theory Appl., (2016).
[20] L. G´orniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Pub- lishers, Dordrecht, 1999.
[21] S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Kluwer Aca- demic, 1997.
[22] M. A. Krasnoselskii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl. Ser., 10 (2) (1958), 345–409.
[23] D. ORegan, Fixed-point theory for the sum of two operators, Appl. Math. Lett., 9 (1996), 1–8.
[24] A. Ouahab, Some perov’s and krasnoselskii type fixed point results and application, Communications in Applied Analysis., 19 (2015), 623–642.
[25] A. Petru¸sel, Multivalued operators and fixed points. Pure Math. Appl., 9 (1998), 165–170.
[26] K. Przes-lawski and L. E. Rybin´ski, Michael selection theorem under weak lower semicontinuity assumption, Proc. Amer. Math. Soc., 109 (1990), 537–543.
Soltani, Z. (2022). Existence of solution for nonlinear integral inclusions. Computational Methods for Differential Equations, 10(1), 215-224. doi: 10.22034/cmde.2020.29281.1411
MLA
Zeinab Soltani. "Existence of solution for nonlinear integral inclusions". Computational Methods for Differential Equations, 10, 1, 2022, 215-224. doi: 10.22034/cmde.2020.29281.1411
HARVARD
Soltani, Z. (2022). 'Existence of solution for nonlinear integral inclusions', Computational Methods for Differential Equations, 10(1), pp. 215-224. doi: 10.22034/cmde.2020.29281.1411
VANCOUVER
Soltani, Z. Existence of solution for nonlinear integral inclusions. Computational Methods for Differential Equations, 2022; 10(1): 215-224. doi: 10.22034/cmde.2020.29281.1411