Finite volume element approximation for time dependent convection diffusion reaction equations with memory

Document Type : Research Paper


1 Laboratoire LMA,ENS de Casablanca, Hassan II university of Casablanca, B.P 50069, Ghandi Casablanca, Morocco.

2 ENSAM de Casablanca, Hassan II University of Casablanca, Casablanca, Morocco.

3 Faculty of Sciences and Technology, University Hassan 1st, Settat, Morocco

4 Laboratoire LS3M, Universit Hassan 1st, 25000 Khouribga, Morocco.


Error estimates for element schemes for time-dependent for convection-diffusion-reaction equations with memory are derived and stated. For the spatially discrete scheme, optimal order error estimates in L2 , H1 , and W1,p norms for 2 ≤ p < ∞, are obtained. In this paper, we also study the lumped mass modification. Based on the Crank-Nicolson method, a time discretization scheme is discussed and related error estimates are derived.


  • [1]   M. Bahaj and A. Rachid, On the Finite Volume Element Method for Self-Adjoint Parabolic Integrodifferential Equations, Journal of Mathematics, (2013), Article ID 464893.
  • [2]   M. Berggren, A vertex-centered, dual discontinuous Galerkin method, J. Comput. Appl. Math., 192 (2006), 175-181.
  • [3]   Z. Cai, On the finite volume method, Numer. Math, 58 (1991), 713–735.
  • [4]   P. Chatzipantelidies, A finite volume method based on the Crouziex–Raviart element for elliptic PDE’s in two dimension, Numer. Math, 82 (1999), 409–432.
  • [5]   P. Chatzipantelidis, Finite volume methods for elliptic PDE’s: A new approach, Mathematical modelling and Numerical Analysis, 36 (2002), 307-324.
  • [6]   P. Chatzipantelidis, R.D. Lazarov, and V. Thom´ee, Error  estimate  for  a  finite  volume  element method for parabolic equations in convex polygonal domains, Numer. Meth. PDEs, 20 (2004), 650–674.
  • [7]   C. Chen and T. Shih, Finite element methods for integrodifferential equations, world Scientific Singapore, 1997.
  • [8]   S. H. Chou, Analysis and convergence of a covolume method for the generalized Stokes problem, Math. Comp, 66 (1997), 85–104.
  • [9]   S. H. Chou, D. Y. Kwak, Analysis and convergence of the MAC scheme for the generalized Stokes problem, Numer.Meth.PDEs, 13 (1997), 147–162.
  • [10] S. H. Chou, D. Y. Kwak, Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math, 90 (2002), 441-458.
  • [11] S. H. Chou, D. Y. Kwak, and Q. Li , Lp error estimates and superconvergence for covolume or finite volume element methods, Numer. Methods PDEs, 19 (2002), 463-486.
  • [12] R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite Volume element approximations of nonlocal in time one-dimensional flows in porous media, Computing, 64 (2000), 157-182.
  • [13] R. E. Ewing, R. D. Lazarov, and Y. Lin, Finite Volume element approximations of nonlocal reactive flows in porous media, Numer. Methods Partial Differential Equations, 16  (2000),  285- 311.
  • [14] R. E. Ewing, T. Lin, and Y. Lin, On the accuracy of the  finite  Volume  element  method  based  on piecewise linear polynomials, SIAM J. Numer. Anal, 39 (2002), 1865-1888.
  • [15] R.  Eymard,  T.  Gallou¨et,  and  R.  Herbin,  Finite  Volume  Methods:   Handbook  of  Numerical Analysis, North-Holland, Amsterdam, 2000.
  • [16] R. D. Lazarov and S. Z. Tomov, Adaptive finite volume element method for convection-diffusion- reaction problems in 3-D, in Scientific Computing and Application, Advances in Computation Theory and Practice NOVA Science Publ., Inc New York, 7 (2001), 91-106.
  • [17] H. Jianguo and X. Shitong, on the finite volume element method for general self-adjoint elliptic problems, SIAM J. Numer. Anal, 35 (1998), 1762-1774.
  • [18] Y.  Lin,  V.  Thom´e,  and  L.  B  Wahlbin,  Ritz-Volterra  projections  to  finite  element  spaces  and applications to integro-differential and related equations, SIAM J. Numer. Anal, 28 (1991), 1047-1070.
  • [19] X. Ma, S. Shu, and A Zhou, symmetric finite volume discretizations for parabolic problems, Comput. Methods Appl. Mech. engrg, 192 (2003), 4467-4485.
  • [20] I. D. Mishev, Finite volume and finite volume element methods for non-symmetric problems, Texas A&M Univ, Ph.D. Thesis, 1997, Tech Rept ISC-96-04-MATH.
  • [21] R. K. Sinha and J. Geiser, Error estimates for finite volume element methods for convection- diffusion-reaction equations, Appl. num Math, 57 (2007), 59-72.
  • [22] V. Thom´ee, Galerkin  finite  element  methods  for  parabolic  problems, (Springer series computa- tional mathematics), Springer Verlag New York, Inc., Secaucus, NJ, 2006.
  • [23] V. R. Voller, Basic Control Volume Finite Element Methods For Fluids And Solids, World Scientific, 2009.