[1] A. Akgl and E. Bonyah, Reproducing kernel Hilbert space method for the solutions of generalized Kuramoto Sivashinsky equation, Journal of Taibah University forScience, 13 (2019), 661-669.
[2] A. Akgl, A. Cordero, and J. R. Torregrosa, A fractional Newton method with 20th-order of convergence and its stability, Applied Mathematics Letters, 98 (2019), 344-351.
[3] A. Akgl, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a PowellEyring non-Newtonian fluid, Journal of Taibah University for Science, 13 (2019), 858-863, DOI: 10.1080/16583655.2019.1651988.
[4] A. Akgl, A. Cordero, and J. R. Torregrosa, Solutions of fractional gas dynamics equation by a new technique, Math Meth Appl Sci. (2019), 110, DOI: 10.1002/mma.5950.
[5] M. B. Aktas and H. M. Baskonus, New Complex and Hyperbolic Forms for AblowitzKaupNewellSegur Wave Equation with Fourth Order, Applied Mathematics and Nonlinear Sciences, 4, (2019), 105112.
[6] T. Bullo, G. Duressa, and G. DEGLA, Higher Order Fitted Operator Finite Difference Method for Two-Parameter Parabolic Convection-Diffusion Problems, International Journal of Engineering and Applied Sciences (IJEAS), 11 (2019), 455-467.
[7] T. Bullo, G. Duressa, and G. DEGLA, Fitted operator average finite difference method for solving singularly perturbed parabolic convection-diffusion problems, International Journal of Engineering and Applied Sciences (IJEAS), 11 (2019), 414-427.
[8] C. Cattani1 and Ya. Rushchitskii, Cubically nonlinear elastic waves: wave equations and methods of analysis, International Applied Mechanics, 39 (2003), 337.
[9] C. Clavero and J. L. Gracia, A high order HODIE finite difference scheme for 1D parabolic singularly perturbed reaction diffusion problems, Applied Mathematics and Computation, 218 (2012), 50675080.
[10] C. Clavero and J. L. Gracia, A higher order uniformly convergent method with Richardson extrapolation in time for singularly perturbed reactiondiffusion parabolic problems, Journal of Computational and Applied Mathematics, 252 (2013), 7585.
[11] P. Das and V. Mehrmann, Numerical solution of singularly perturbed convection-diffusionreaction problems with two small parameters, BIT Numer Math, (2015), DOI:10.1007/s10543-015-0559-8.
[12] W. Gao, P. Veeresha, D. G. Prakasha, and H. M. Baskonus, Novel Dynamic Structures of 2019-nCoV with Nonlocal Operator via Powerful Computational Technique, Biology, 9, (2020), 107, doi:10.3390/biology9050107.
[13] W. Gao, H. F. Ismael, H. Bulut, and H. M. Baskonus, Instability modulation for the (2 + 1)− dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Phys. Scr., 95, (2020), 035207.
[14] W. Gao, H. F. Ismael, A. M. Husien, H. Bulut, and H. M. Baskonus, Optical Soliton Solutions of the Cubic-Quartic Nonlinear Schrdinger and Resonant Nonlinear Schrdinger Equation with the Parabolic Law, Appl. Sci., 10(219) (2020), doi:10.3390/app10010219.
[15] W. Gao, H. Rezazadeh, Z. Pinar, H. M. Baskonus, S. Sarwar, and G. Yel, Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Optical and Quantum Electronics, 52 (2020), https://doi.org/10.1007/s11082-019-2162-8.
[16] W. Gao, M. Senel, G. Yel, H. M. Baskonus, and B. Senel, New complex wave patterns to the electrical transmission line model arising in network system, AIMS Mathematics, 5, (2020), 18811892.
[17] W. Gao, G. Yel, H. M. Baskonus, and C. Cattani, Complex solitons in the conformable (2+ 1)−dimensional Ablowitz Kaup-Newell-Segur equation, AIMS Mathematics, 5 (2019), 507521.
[18] S. Gowrisankar and N. Srinivasan, The parameter uniform numerical method for singularly perturbed parabolic reaction diffusion problems on equidistributed grids, Applied Mathematics Letters, 26 (2013), 10531060.
[19] S. Gowrisankar and N. Srinivasan, Robust numerical scheme for singularly perturbed convectiondiffusion parabolic initialboundary-value problems on equidistributed grids, Computer Physics Communications, 185 (2014), 2008-2019.
[20] J. L. Gracia and E. ORiordan, Numerical approximation of solution derivatives in the case of singularly perturbed time dependent reactiondiffusion problems, Journal of Computational and Applied Mathematics, 273 (2015), 1324.
[21] V. Gupta, M.K. Kadalbajoo, and R.K. Dubey, A parameter uniform higher order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters, International Journal of Computer Mathematics, (2018), DOI:10.1080/00207160.2018.1432856.
[22] J. J. H. Miller, E. ORiordan, and G.I. Shishkin, Fitted numerical methods for singular perturbation problems, Error estimate in the maximum norm for linear problems in one and two dimensions, Revised Edition, World Scientific, 2012.
[23] K. W. Morton, Numerical solution of convection-diffusion problems, CRC Press, Taylor and Francis Group, 1996.
[24] J. B. Munyakazi and K. C. Patidar, A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems, Computational and Applied Mathematics,32 (2013), 509 519.
[25] M. P. Rajan and G. D. Reddy , An iterative technique for solving singularly perturbed parabolic PDE, J. Appl. Math. Comput., (2015), DOI:10.1007/s12190-015-0866-x.
[26] H. G. Roos, M. Stynes, and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Convection-Diffusion-Reaction and Flow Problems, Second Edition, Springer Series in Computational Mathematics ISSN0179-3632, 2008.
[27] J. Singh, D. Kumar, and Z. Hammouch, Abdon Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515.
[28] G. D. Smith, Numerical solution of partial differential equations, Finite difference methods, Third edition, Clarendon press, Oxford, 1984.
[29] L. Zhilin, Z. Qiao, and T. Tang, Numerical solution of differential equations, Introduction to finite difference and finite element methods, printed in the United Kingdom by Clays, 2018