[1] N. Ali, G. Zaman, and M. I. Chohan, Mathematical analysis of delayed HIV-1 infection model for the competition of two viruses, Coge Math Stat, 4(1) (2017), 1332821.
[2] N. Ali, G. Zaman, and M. I. Chohan, Global Stability of a Delayed HIV-1 Model with Saturations Response, Appl. Math, 11(1) (2017), 1–6.
[3] N. Ali, G. Zaman, and M. Ikhlaq Chohan, Dynamical behavior of HIV-1 epidemic model with time dependent delay, J. Math. Comput. Scie, 6(3) (2016), 377–389.
[4] S. Bonhoeffer, J. M. Coffin, and M. A. Nowak, Human immunodeficiency virus drug therapy and virus load, J. Virol, 71(4) (1997), 3275–3278.
[5] R. Culshaw, S. Ruan, and R. Spiteri, Optimal HIV treatment by maximising immune response, J. Math. Bio. 48(5) (2004), 545–562.
[6] J. H. David, H. Tran,and Banks, HIV model analysis and estimation implementation under optimal control based treatment strategies, Int. J .Pure Appl. Math, 57(3) (2009), 357–392.
[7] E. Eisele and R. F. Siliciano, Redefining the Viral Reservoirs That Prevent HIV-1 Eradication, Immunity, 3(37) (2012), 377-388.
[8] K. R. Fister, S. Lenhart, and J. S. Mc Nally, Optimizing Chemotherapy in an HIV Model, Electron. J. Diff. Eqns, 32(32) (1998), 1–12.
[9] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, New York, 1975.
[10] L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays, Special Issue on Computational Methods for Optimization and Control J. Ind. Manag. Optim, 10(2) (2014), 413–441.
[11] T. Khan, G. Zaman, and M. I. Chohan, The transmission dynamic and optimal control of acute and chronic hepatitis B, J. Biol Dyn, 11 (1) (2019), 172–189.
[12] T. Khan, G. Zaman, and M. I. Chohan, The transmission dynamic of different hepatitis Binfected individuals with the effect of hospitalization , J. Biol Dyn, 12 (1) (2018), 611–631.
[13] T. Khan, Z. Ullah, N. Ali, and G. Zaman, Modeling and control of the hepatitis B virus spreading using an epidemic model, Chao. Soli. Frac, 124 (2019), 1–9.
[14] C. Michie, A. McLean, C. Alcock, and P. Beverly, Lifespan of human lymphocyte subsets defined by cd45 isoforms, Nature, 360(6401) (1992), 264–265.
[15] G. Nolan, Harnessing viral devices as pharmaceuticals: fighting HIV-1s fire with fire, Cell, 90 (1997), 821–824.
[16] M. Nowak and C. R. Bangham, Population Dynamics of Immune Respons Persistent Viruses, Science, 272 (5258) (1996), 74–79.
[17] N. Nowak and R. May, Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford, 2000.
[18] A. Prelson and P. W. Nelson, Mathematical models of HIV dynamics in vivo, Siam Review, 4(1) (1992), 3-44.
[19] J. A. Sharp, A. P. Browning, A.P, T. Mapder, C. M. Baker, K. Burrage, and M. J. Simpson, Designing combination therapies using multiple optimal controls, J. Theo. Biol, 497 (2020), 110277.
[20] D. Tully, Optimizing Chemotherapy in an HIV Model, College of the Redwoods, Springer, 1999.
[21] W. Wodarz and M. A. Nowak, Specific therapy regimes could lead to long-term immunological control of HIV, Proc. Natl. Acad. Sci.96, 95(25) (1999), 14464–14469.
[22] X. Zhou, X. Song, and X. Shi, A differential equation model of HIV infection of CD4+ T-cells with cure rate, J. Math. Anal. Appl, 342(2) (2008), 1342–1355.