[1] T. Ak, S. B. G. Karakoc, and A. Biswas, A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation, Iran J. Sci. Technol. Trans. Sci., 41 (2017), 1109–1121.
[2] T. Ak, S. B. G. Karakoc, and A. Biswas, Application of Petrov-Galerkin finite element method to shallow water waves model: Modified Korteweg-de Vries equation, Scientia Iranica B, 24(3) (2017), 1148-1159.
[3] T. Ak , H. Triki, S. Dhawan, S. K. Bhowmik, S. P. Moshokoae, M. Z. Ullah, and A. Biswas, Computational analysis of shallow water waves with Korteweg-de Vries equation, Scientia Iranica B, 25(5) (2017), 2582-2597.
[4] E. N. Aksan and A. Ozdes, Numerical solution of Korteweg–de Vries equation by Galerkin Bspline finite element method, Applied Mathematics and Computation, 175 (2006), 1256–1265.
[5] A. Biswas, 1-soliton solution of the K(m,n) equation with generalized evolution, Physics Letters A, 372 (2008), 4601-4602.
[6] A. Biswas and D. Milovic, Bright and dark solitons of the generalized nonlinear Schr¨odinger’s equation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1473–1484.
[7] A. Biswas, 1-soliton solution of the K(m, n) equation with generalized evolution and timedependent damping and dispersion, Computers and Mathematics with Applications, 59 (2010), 2536–2540.
[8] A. Biswas and K. R .Raslan, Numerical simulation of the modified Korteweg-de Vries Equation, Physics of Wave Phenomena, 19(2) (2011), 142-147.
[9] P. Bracken, Specific Solutions of the Generalized Korteweg-de Vries Equation With Possible Physical Applications, Central European Journal of Physics, 3(1) (2005), 127-138.
[10] M. S. Bruzon, A. P. Marquez, T. M. Garrido, E. Recio, and R. de la Rosa, Conservation laws for a generalized seventh order KdV equation, Journal of Computational and Applied Mathematics, 354 (2019), 682-688.
[11] A. Canıvar, M. Sarı and I. Da˘g, A Taylor-Galerkin finite element method for the KdV equation using cubic B-splines, Physica B, 405 (2010), 3376-3383.
[12] I. Da˘g and Y. Dereli, Numerical solutions of KdV equation using radial basis function, Applied Mathematical Modelling, 32 (2008), 535–546.
[13] D. B. Dambaru and I.B. Muhammad, Numerical solution of KdV equation using modified Bernstein polynomials, Appl. Math. Comput.,174(2) (2006), 1255–1268.
[14] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H.C. Morris, Solitons and nonlinear wave equations, New York, Academic Press, 1982.
[15] O. Ersoy and I. Da˘g, The Exponential Cubic B-Spline Algorithm for Korteweg-de Vries Equation, Advances in Numerical Analysis, 2015 (2015), 1-8.
[16] B. Fornberg and G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. Roy. Soc.,289 (1978), 373-404.
[17] C. Franke and R. Schaback, Solving partial differential equations by collocation using radial basis functions, Appl. Math. Comput, 93 (1998), 73–82.
[18] M. G. Garcia Alvarado and G. A. Omel’yanov, Interaction of solitary waves for the generalized KdV equation, Commun Nonlinear Sci Numer Simul., 17 (2012), 3204–3218.
[19] C. S. Gardner, J. M. Green, M. D. Kruskal, and R.M. Miura, Method for solving Korteweg–de Vries equation, Physical Review Letters, 19 (1967), 1095–1097.
[20] G. A. Gardner, L. R. T. Gardner, and A. H. A. Ali, A finite element solution for the Korteweg– de Vries equation with cubic B-splines, UCNW Math Preprint, 1989.
[21] G. A. Gardner, L. R. T. Gardner, and A. H. A. Ali, Modelling solutions of the Korteweg–de Vries equation with quintic splines, UCNW Math Preprint, 1990.
[22] A. Ghiloufi, A. Rouatbi, and K. Omrani, A new conservative fourth-order accurate difference scheme for solving a model of nonlinear dispersive equations, Mathematical Methods in the Applied Sciences, 41 (2018), 5230- 5253.
[23] K. Goda, On instability of some finite difference schemes for Korteweg-de Vries equation, J. Phys. Soc. Japan, 39 (1975), 229-236.
[24] I. S. Greig and J. L. Morris, A hopscotch method for the Korteweg-de-Vries equation, J. Computational Phys., 20(1) (1976), 64–80.
[25] O. Guner, Shock waves solution of nonlinear partial differential equation system by using the ansatz method, Optik, 130 (2017), 448-454.
[26] I. E. Inan, Exact solutions for coupled KdV equation and KdV equations, Physics Letters A, 371 (2007), 90–95.
[27] M. Inc, Numerical simulation of KdV and mKdV equations with initial conditions by the variational iteration method, Chaos Soliton Fractals, 34(4) (2007), 1075–1081.
[28] D. Irk, Quintic B-spline Galerkin method for the KdV equation, Anadolu University Journal of Science and Technology B- Theoritical Sciences, 5(2) (2017), 111-119.
[29] D. Irk, I. Da˘g, and B. Saka, A small time solutions for the Korteweg–de Vries equation using spline approximation, Appl. Math. Comput, 173(2) (2006), 834-846.
[30] M. S. Ismail and A. Biswas, 1-Soliton solution of the generalized KdV equation with generalized evolution, Applied Mathematics and Computation, 216 (2010), 1673–1679.
[31] H. N. A. Ismail, K. R. Raslan, and G. S. E. Salem, Solitary wave solutions for the general KDV equation by Adomian decomposition method, App. Mathematics and Comput., 154 (2004), 17–29.
[32] S. B. G. Karakoc, A quartic subdomain finite element method for the modified KdV equation, Stat., Optim. Inf. Comput., 6 (2018), 609–618.
[33] S. B. G. Karakoc, Numerical solutions of the mKdV equation via collocation finite element method, Anadolu University Journal of Science and Tech. B-Theoritical Sciences, 6(2) (2018), 1-13.
[34] D. Kaya, An application for the higher order modified KdV equation by decomposition method, Commun. in Nonlinear Science and Num. Simul., 10 (2005), 693-702.
[35] D. Kaya and M. Aassila, An application for a generalized KdV equation by the decomposition method, Physics Letters A, 299(2-3) (2002), 201-206.
[36] A. Korkmaz, Numerical Algorithms for Solutions of Korteweg–de Vries Equation, Numerical Methods for Partial Differential Equations, 26(6) (2010), 1504-1521.
[37] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 39(5) (1895), 422–443.
[38] S. Kutluay, A. R. Bahadır, and A. Ozdes, A small time solutions for the Korteweg–de Vries equation, Appl. Math. Comput., 107 (2000), 203–210.
[39] X. Lai, Q. Cao, and E. H. Twizell, The global domain of attraction and the initial value problems of a kind of GKdV equations, Chaos Solitons and Fractals, 23 (2005), 1613–1628.
[40] M. S. A. Latif, Some exact solutions of KdV equation with variable coefficients, Commun Nonlinear Sci. Numer. Simulat., 16 (2011), 1783–1786.
[41] L. E. Lindgren, From Weighted Residual Methods to Finite Element Methods, 2009.
[42] H. Liu and N. Yi, A Hamiltonian preserving discontinuous Galerkin method forthe generalized Korteweg–de Vries equation, Journal of Computational Physics, 321 (2016), 776–796.
[43] P. M. Prenter, Splines and Variational Methods, John Wiley & Sons, New York, NY.USA, 1975.
[44] K. R. Raslan and H. A. Baghdady, A finite difference scheme for the modified Korteweg-de Vries equation, General Mathematics Notes, 27(1) (2015), 101-113.
[45] K. R. Raslan and H. A. Baghdady, New algorithm for solving the modified Korteweg-de Vries(mKdV) equation, International Journal of Research and Reviews in App. Sciences, 18(1) (2014), 59-64.
[46] A. Rouatbi, T. Achouri, and K. Omrani, High-order conservative difference scheme for a model of nonlinear dispersive equations, Computational and Applied Mathematics, 37 (2018), 4169-4195.
[47] A. Rouatbi and K. Omrani, Two conservative difference schemes for a model of nonlinear dispersive equations, Chaos, Solitons and Fractals, 104 (2017), 516-530.
[48] B. Saka, Cosine expansion-based differential quadrature method for numerical solution of the KdV equation, Chaos, Solitons and Fractals, 40 (2009), 2181–2190.
[49] A. Salih, Weighted Residual Methods, Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram – December 2016.
[50] M. Sarboland and A. Aminataei, On the numerical solution of the nonlinear Korteweg–de Vries equation, Systems Science & Control Engineering: An Open Access Journal, 3 (2015), 69–80.
[51] J. Sarma, Exact solutions for modified Korteweg–de Vries equation, Chaos, Solitons and Fractals, 42 (2009), 1599-1603.
[52] M. Sepulveda and O. V. Villagran, Numerical Methods for Generalized KdV equations, In Anais do XXXI Congresso Nacional de Matematica Aplicada e Computacional, 2008.
[53] J. M. Sanz Serna and I. Christie, Petrov Galerkin methods for non linear dispersive wave, J. Comput. Phys., 39 (1981), 94–102.
[54] A. A. Soliman, Collocation solution of the Korteweg-de Vries equation using septic splines, Int. J. Comput. Math., 81 (2004), 325-331.
[55] A. A. Soliman, A. H. A. Ali and K. R. Raslan, Numerical solution for the KdV equation based on similarity reductions, Applied Mathematical Modelling, 33 (2009), 1107–1115.
[56] H. Triki and A. M. Wazwaz, Bright and dark soliton solutions for a K(m,n) equation with t-dependent coefficients, Physics Letters A, 373 (2009), 2162–2165.
[57] O. O. Vaneeva, N. C. Papanicolaou, M. A. Christou, and C. Sophocleous, Numerical solutions of boundary value problems for variable coefficient generalized KdV equations using Lie symmetries, Communications in Nonlinear Science and Numerical Simulation, 19(9) (2014), 3074-3085.
[58] A. C. Vliengenthart, On finite difference methods for the Korteweg-de Vries equation, J. Eng. Math. 5 (1971), 137-155.
[59] A. M. Wazwaz, Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method, Chaos, Solitons and Fractals, 12 (2001), 2283–2293.
[60] A. M. Wazwaz, A variety of (3+1)-dimensional mKdV equations derived by using the mKdV recursion operator, Computers and Fluids, 93 (10) (2014), 41-45.
[61] A. M. Wazwaz, New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: multiple soliton solutions, Chaos, Solitons and Fractals, 76 (2015), 93-97.
[62] A. M. Wazwaz, A study on KdV and Gardner equations with time-dependent coefficients and forcing terms, Appl. Math. Comput., 217 (2010), 2277–2281.
[63] N. J. Zabusky, A synergetic approach to problem of nonlinear dispersive wave propagation and interaction, in:W. Ames(Ed.), Proceedings of the Symposium Nonlinear Partial Differential Equation Academic Press, 1967.
[64] N. J. Zabusky and M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240-243.