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Abstract In this paper, one numerical method is presented for numerical approximation of
linear constrained optimal control problems with quadratic performance index. The

method with variable coefficients is based on Hermite polynomials. The properties of

Hermite polynomials with the operational matrices of derivative are used to reduce
optimal control problems to the solution of linear algebraic equations. Illustrative

examples are included to demonstrate the validity and applicability of the technique.
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1. Introduction

One of the widely used methods to solve optimal control problems is the direct
method. There are a large number of research papers that employ this method to
solve optimal control problems (see for example [2–5, 8, 9, 14–17, 19, 27–34, 37–40]
Razzaghi, et. al. used direct method for variational problems by using hybrid of block-
pulse and Bernoulli polynomials [38]. Optimal control of switched systems based on
Bezier control points presented in [19]. A new approach using linear combination
property of intervals and discretization is proposed to solve a class of nonlinear op-
timal control problems, containing a nonlinear system and linear functional [43, 44].
Time varying quadratic optimal control problem was solved by using Bezier control
points [18]. Hybrid functions approach for nonlinear constrained optimal control prob-
lems presented by Mashayekhi et. al. [34]. The optimal control problem of a linear
distributed parameter system is studied via shifted Legendre polynomials (SLPs) in
[24]. An accurate method is proposed to solve problems such as identification, anal-
ysis and optimal control using the Bernstein orthonormal polynomials operational
matrix of integration [42]. In [23] Jaddu and Shimemura proposed a method to solve
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the linear-quadratic and the nonlinear optimal control problems by using Chebyshev
polynomials to parameterize some of the state variables, then the remaining state vari-
ables and the control variables are determined by the state equations. Also Razzaghi
and Elnagar [39] proposed a method to solve the unconstrained linear-quadratic opti-
mal control problem with equal number of state and control variables. Their approach
is based on using the shifted Legendre polynomials to parameterize the derivative of
each of the state variables. The approach proposed in [34] is based on approximating
the state variables and control variables with hybrid functions. In [28] operational
matrices with respect to Hermite polynomials and their applications is presented for
solving linear dfferential equations with variable coeffcients. In [47] investigation of
optimal control problems and solving them using Bezier polynomials is presented.

In this paper, we present a computational method for solving linear constrained
quadratic optimal control problems by using Hermite polynomials. The method is
based on approximating the state variables and the control variables with Hermite
polynomials. Our method consists of reducing the optimal control problem into a set
of linear algebraic equations by initial expanding the state rate x(t) the control u(t) as
a Hermite polynomial with unknown coefficients. In order to approximate the integral
and differential parts of the problem and the performance index, differentiation Dφ

is given.
The paper is organized as follows: In Section 2 we describe the basic formulation of

the Hermite functions required for our subsequent development. Section 3 is devoted
to the formulation of optimal control problems. Section 4 summarizes the application
of this method to the optimal control problems, and in Section 5, we report our
numerical finding and demonstrate the accuracy of the proposed method.

2. Hermite polynomials and their properties

Hermite polynomials are a classical orthogonal polynomial sequence that arise in
probability. They are named after Charles Hermite (1864). The explicit expression
of Hermite polynomials of degree n is defined by [28]:

Hn(t) = n!

[n2 ]∑
i=0

(−1)i(2t)n−2i

i!(n− 2i)!
, (2.1)

where t is real number (t ∈ R), and Rodrigues formula is the following

Hn(t) = (−1)net
2 dn

dtn
(e−t

2

). (2.2)

Eqs. (2.1) and (2.2) are solutions for the following equation

x′′ − 2tx′ + 2nx = 0. (2.3)

Namely x(t) = Hn(t). The first few Hermite polynomials are
H0(t) = 1 , H1(t) = 2t , H2(t) = 4t2 − 2 , H3(t) = 8t3 − 12t
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2.1. Some properties of Hermite polynomials. These polynomials are satisfed
in the following three terms recurrence formula

Hi+1(t) = 2tHi(t)− 2iHi−1(t). (2.4)

An important property of the Hermite polynomials is the following derivative relation[28]

H ′i(t) = 2iHi−1(t), (2.5)

where i = 0, . . . , n and H ′i(t) is derivation of Hermite polynomials of degree i.
Further, Hi(t) are orthogonal in L2

w(Λ), weher Λ = (−∞,+∞) with respect to the

weight function w(t) = e−t
2

and satisfy in the following relation∫ +∞

−∞
Hi(t)Hj(t)w(t)dt = 2ii!

√
πδi,j , (2.6)

where δi,j is kronecker delta function. Some properties for Hermite polynomials are

Hi(−t) = (−1)nHi(t) , H2i(0) = (−1)i (2i)!i! , H2i+1(0) = 0,

H ′2i(0) = 0 , H ′2i+1(0) = (−1)i (2i+2)!
(i+1)! .

2.2. The operational matrix of the Hermite polynomials. A function x(t) ∈
L2
w(Λ), can be expressed in terms of Hermite polynomials as

x(t) =

+∞∑
−∞

aiHi(t), (2.7)

where the coeffcients ai are given by

ai =
1

2ii!
√
π

∫ +∞

−∞
Hi(t)x(t)w(t)dt. (2.8)

In practice, only the first n+1 term of the Hermite polynomials are considered. Then
we have:

xn(t) =

n∑
i=0

aiHi(t) = AΦn(t), (2.9)

where Hermite coefficients vector A and Hermite vector Φ(t) are given by

A = [a0, . . . , an],

Φn(t) = [H0(t), . . . ,Hn(t)]T , (2.10)

where T denotes transposition.
The operational matrix of derivative: The differentiation of vector Φn(t) can be
expressed as

Φ′n(t) = DφΦn(t), (2.11)
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where Dφ is the (n + 1)(n + 1) operational matrix of derivative for the Hermite
polynomials given as follows:

Dφ = (di,j) =

{
2i, j = i− 1,
0, otherwise

(2.12)

2.3. Approximations by Hermite polynomials. Now in this section, we present
some useful theorems which show the approximations of functions by Hermite poly-
nomials. For this purpose, let us define
Sn = span{H0(t), H1(t), . . . ,Hn(t)}. Any polynomial h(t) of degree m can be ex-
panded in terms of Hi(t), i = 0 . . . n as follows

h(t) =

n∑
i=0

ciHi(t). (2.13)

Also the L2(Λ)-orthogonal projection pn : L2(Λ) → Sn is a mapping in a way that
for any y(t) ∈ L2(Λ), we have:

〈pn(y)− y, φ〉 = 0, ∀φ ∈ Sn.
Due to the orthogonality, we can write

pn(y) =

n−1∑
i=0

ciHi(t), (2.14)

where ci are constants in the following form

ci =
1

γi
〈y(t), Hi(t)〉L2

w
,

where γi = 2ii!
√
π. In the literature of spectral methods, pn(y) is named as Hermite

expansion of y(t) and approximates y(t) on (−∞,+∞). Also estimating the distance
between y(t) and it’s Hermite expansion as measured in the weighed norm ‖ . ‖w is
an important problem in numerical analysis. The following theorem provide the basic
approximation results for Hermite expansion.

Theorem 1. we have
‖ dl

dtl
(pn(y)− y) ‖w(t)≤ n(l−m)/2 ‖ dm

dtm y(t) ‖w(t),

0 ≤ l ≤ m, ∀y ∈ Bm(Λ),
where

Bm(Λ) = {∀y ∈ L2
w : dl

dtl
y ∈ L2

w(Λ), 0 ≤ l ≤ m}.
Proof: see [17].
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3. Problem Statement

Consider the following class of nonlinear systems with inequality constraints,

ẋ(t) = Ax(t) +Bu(t), (3.1)

x(a) = x0, x(b) = x1, (3.2)

where A = (ai,j)n×n and B = (bi,j)m×m are constant matrices and x(t) and u(t) are
n × 1 and m × 1 state and control vectors respectively. The purpose is to find the
optimal control u(t) and the corresponding state trajectory x(t), t ∈ (a, b) satisfying
Eqs. (3.1) and (3.2) while minimizing (or maximizing) the quadratic performance
index

Z =
1

2
xT (b)Gx(b) +

1

2

∫ b

a

(xT (t)Q(t)x(t) + uT (t)R(t)u(t))dt, (3.3)

where a and b are constant, also G(t) = (gi,j(t))n×n, Q(t) = (qi,j(t))n×n are symmet-
ric positive semi-definite matrices and R(t) = (ri,j(t))m×m is a symmetric positive
definite matrix.

4. The proposed method

Let

xi(t) ' XiΦn(t), (4.1)

uj(t) ' U jΦn(t), (4.2)

where Xi, i = 1, . . . , n, and U j , j = 1, . . . ,m are 1×(n+1) state and control coefficient
vectors respectively. Then using (2.4) we get

ẋi(t) ' Xi[DφΦn(t)]. (4.3)

Using Eqs. (4.1) and (4.2) we have

x(t) ' XΦn(t) = [

n∑
j=0

X1
jHj(t), . . . ,

n∑
j=0

Xn
j Hj(t)], (4.4)

u(t) ' UΦn(t) = [

n∑
j=0

U1
jHj(t), . . . ,

n∑
j=0

Umj Hj(t)], (4.5)

where X = (Xk
i )n×(n+1) and U = (Urj )m×(n+1) are state and control coefficient

matrices respectively. The boundary conditions in Eq. (3.2) can be rewritten as

x(a) = x0 = d0⊗EΦn(t), (4.6)

x(b) = x1 = d1⊗EΦn(t), (4.7)

where d0 and d1 are n × 1 constant vectors, E = [1, 0 . . . , 0] is 1 × (n + 1) constant
vector, and the symbol ′⊗′ denotes Kronecker product [30]. If x(a) or x(b) is unknown
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in Eq. (3.2), then we put

x(a) ' XΦTn (a) =

n∑
j=0

X1
jHj(a), . . . ,

n∑
j=0

Xn
j Hj(a), (4.8)

x(b) ' XΦTn (b) =

n∑
j=0

X1
jHj(b), . . . ,

n∑
j=0

Xm
j Hj(b). (4.9)

4.1. Performance Index Approximation. By substituting Eqs. (4.4), (4.5) and
(4.7) in Eq. (3.3) we get

min(max)Z =
1

2
x1G(b)x1

T
+

1

2
X[

∫ b

a

Φn(t)Q(t)ΦTn (t)dt]XT

+
1

2
U

∫ b

a

Φn(t)R(t)Φn(t)T dt]UT . (4.10)

For problems with time-varying performance index, Q(t) and R(t) are functions of
time. Let

Px =

∫ b

a

Φn(t)Q(t)ΦTn (t)dt, and Pu =

∫ b

a

Φn(t)R(t)ΦTn (t)dt. (4.11)

Eq. (4.11) can be evaluated by numerical integration techniques. By substituting
Eqs. (4.9) and (4.11) in Eq. (4.10) we get

Z[X,U ] =
1

2
X(P̂ + Px)XT +

1

2
UPuU

T , (4.12)

where

P̂ = Φn(b)G(b)ΦTn (b).

The boundary conditions in Eq. (3.2) can be expressed as

q0k = xk(a)− x0k , k = 1, . . . , n, (4.13)

q1k = xk(b)− x1k , k = 1, . . . , n. (4.14)

We now find the extremum of Eq. (4.12) subject to Eqs.(4.13) and (4.14) using the
Lagrange multiplier technique. Let

Z[X,U, λ0, λ1] = Z[X,U ] + λ0Q0 + λ1Q1. (4.15)

where Q0 = (q0k), k = 1, . . . , n and Q1 = (q1k), k = 1, . . . , n are (n×1) constant vectors.
The necessary condition for the extremum of (4.15) is

∇Z[X,U, λ0, λ1] = 0. (4.16)
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5. Illustrative Examples

This section is devoted to numerical examples. We implemented the proposed
method in last section with MALAB (2012) in personal computer. To illustrate our
technique, we present four numerical examples, and make a comparison with some of
the results in the literature.

Example 1 This example is adapted from [18] and also studied by using least square
method based on Bezier control points which minimizes

Z =
1

2

∫ 1

0

u2(t)dt, (5.1)

subject to

ẋ1 = x2 + u, (5.2)

x2 − u = 0, (5.3)

with the boundery conditions

x1(0) = 1, x1(
1

2
) = x1(1) = 0. (5.4)

Here we solve this problem with Hermite polynomials by choosing n = 3. Let

x1(t) = X1Φ3(t), (5.5)

x2(t) = X2Φ3(t), (5.6)

u(t) = UΦ3(t), (5.7)

where

X1 = [X1
0 , X

1
1 , X

1
2 , X

1
3 ],

X2 = [X2
0 , X

2
1 , X

2
2 , X

2
3 ],

and

U = [U0, U1, U2, U3].

Using Eqs. (2.4), (5.5) and (5.6) we get

ẋ1(t) = X1[DφΦ3(t)], (5.8)

ẋ2(t) = X2[DφΦ3(t)], (5.9)

where Dφ is the operational matrix of derivative given in Eq. (2.5). By substituting
Eqs. (5.5)-(5.9) in Eqs. (5.2) and (5.3) we obtain

[X1Dφ −X2 − U ]Φ3(t) = 0, (5.10)

[X2 − U ]Φ3(t) = 0. (5.11)

Let

Zχ[t0,t1] =
1

2

∫ t1

t0

u2(t)dt, (5.12)
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Using Eq. (5.7) in Eq. (5.1) we have

Zχ[t0,t1] =
1

2

∫ t1

t0

u2(t)dt =
1

2

∫ t1

t0

(UΦ3(t))(UΦ3(t))T dt

=
1

2

∫ t1

t0

(UΦ3(t))(ΦT3 (t)UT )dt =
1

2
U

(∫ t1

t0

Φ3(t)ΦT3 (t)dt

)
UT

=
1

2
UVχ[t0,t1]U

T , (5.13)

where Vχ[t0,t1] =
∫ t1
t0

Φ3(t)ΦT3 (t)dt is of order (4 × 4) constant matrix. Using the

Lagrange multiplier technique to find the extremum of (5.13) subject to the conditions
(5.4) ,(5.10) and (5.11), we have

Z[U, λ1, λ2, λ3] =

{
Z[U, λ1, λ2] = Z[U ] + λ1Q1 + λ2Q2, t ∈ [0, 12 ],
Z[U, λ2, λ3] = Z[U ] + λ2Q2 + λ3Q3, t ∈ [ 12 , 1],

(5.14)

where Q1 = X1Φ3(0)− 1 ,Q2 = X1Φ3( 1
2 ) and Q3 = X1Φ3(1).

The necessary conditions are

∇Z[U, λ1, λ2, λ3] = 0. (5.15)

The exact solutions of the problem are:

x1(t) =

{
−2t+ 1, t ∈ [0, 12 ],
0, t ∈ [ 12 , 1],

x2(t) =

{
−1, t ∈ [0, 12 ],
0, t ∈ [ 12 , 1],

u(t) =

{
−1, t ∈ [0, 12 ],
0, t ∈ [ 12 , 1].

We obtain the state and control solutions as following:

Table 1. Results for Example 1. and t∈ [0, 1
2

]

New Method Method[47] Method[18]

X1 : [1,−1, 0, 0] [8, 16
3
, 8
3
, 0] [8, 16.02400

3
, 7.97601

3
, 0]

X2 : [−1, 0, 0, 0] [−8,−8,−8,−8] [−7.97601, −24.07199
3

, −24.07199
3

,−7.96601]

U : [−1, 0, 0, 0] [−8,−8,−8,−8] [−7.976003, −24.07198
3

, −24.07198
3

,−7.97601]

Z : 0.25 0.25 0.2500003224

for t ∈ [0, 12 ] we obtain

x1(t) = X1Φ3(t) = H0(t)−H1(t) + 0H2(t) + 0H3(t) = −2t+ 1.

x2(t) = u(t) = X2Φ3(t) = −H0(t) + 0H1(t) + 0H2(t) + 0H3(t) = −1.

for t ∈ [ 12 , 1]

X1 = X2 = U = [0, 0, 0, 0] , then we have x1(t) = x2(t) = u(t) = 0,



322 A. O. YARI AND M. MIRNIA

Table 2. The approximate values of Z, for Example 2.

n Presented Method error

3 2.792372881355932 7.1290e− 004

4 2.791662024685567 2.0516e− 006

5 2.791660082922831 1.0761e− 007
6 2.791659975445970 1.3590e− 010

7 2.791659975313821 3.7578e− 012

8 2.791659975310065 2.0228e− 015

which is the exact solution.

Example 2 This example is adapted from [40] and also studied by using Bezier
parameterization for optimal control by differential evolution

min Z =

∫ 1

0

(3x2(t) + u2(t))dt (5.16)

subject to
ẋ(t) = x(t) + u(t),
x(0) = 1.

Let n = 3 then we have

x(t) = XΦ3(t), u(t) = UΦ3(t). (5.17)

We obtain the state and control solutions which are presented in Table 2, and the
analytical solutions are [40]:

x(t) =
3e−4

3e−4 + 1
e2t +

1

3e−4 + 1
e−2t,

u(t) =
3e−4

3e−4 + 1
e2t − 3

3e−4 + 1
e−2t. (5.18)

The optimal values of objective functional is:

Z∗ = 2.791659975310063.

Figure 1 and Figure 2 show the errors for state and control functions for example 2.

Example 3[40] Find the minimum of the functional

Z =

∫ 1

0

(x2(t) + u2(t))dt (5.19)

subject to

ẋ1(t) = x2(t), x1(0) = 0, x1(1) = 1 (5.20)

ẋ2(t) = u(t), x2(0) = 0. (5.21)

The exact solutions are:

x1(t) =
3

2
t2 − 1

2
t3, x2(t) = 3t− 3

2
t2, u(t) = 3− 3t.
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Figure 1. Plots of errors for state (left) and control (right) functions for n=3
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Figure 2. Plots of errors for state (left) and control (right) functions for n=7
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For n = 3 we get the exact solution as:

X1 = [
3

4
,−3

8
,

3

8
,− 1

16
]

→ x1(t) =
3

4
H0(t)− 3

8
H1(t) +

3

8
H2(t)− 1

16
H3(t) =

3

2
t2 − 1

2
t3.

X2 = [−3

4
,

3

2
,−3

8
, 0]

→ x2(t) = −3

4
H0(t) +

3

2
H1(t)− 3

8
H2(t) = 3t− 3

2
t2.

U = [3,−3

2
, 0, 0]→ u(t) = 3H0(t)− 3

2
H1(t) = 3− 3t.

Z = 4.



324 A. O. YARI AND M. MIRNIA

Table 3. The approximate values of Z, for Example 4.

n Presented Method error

3 0.7616037565468665 9.6006e− 06

4 0.7615941626680414 6.7123e− 09

5 0.7615941563301999 7.7435e− 011
6 0.7615941559557914 2.6534e− 014

7 0.7615941559557651 2.2204e− 016

Example 4 Find the extremum of the functional [12]

Z =

∫ 1

0

(x2(t) + u2(t))dt, (5.22)

where

ẋ(t) = u(t), (5.23)

with the conditions

x(0) = 1, x(1) unspecified, (5.24)

By using Euler equation and free payoff term the exact solutions as following:

x(t) = − sinh(1− t)
cosh 1

,

u(t) =
cosh(1− t)

cosh 1
,

Z = 0.761594155955765.

Euler equation and free payoff term respectively are:

Euler equation:
∂F

∂x
− d

dt
(
∂F

∂ẋ
) = 0,

free payoff term:
∂F

∂ẋ
(1) = 0,

by using Eq. (5.23) F (x, u) as following:

F (x, u) = F (x, ẋ) = x2 + ẋ2.

With free payoff term the other condition is obtained as following:

ẋ(1) = 0. (5.25)

only be used free payoff term in the solving problemes with presented method and
isnt nesessary Euler equation. Figure 3 and figure 4 show plots of errors for state
and control functions for example 4. Table 4 shows the optimal values of objective
functional.
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Figure 3. Plots of errors for state (left) and control (right) functions for n=3
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Figure 4. Plots of errors for state (left) and control (right) functions for n=7
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Example 5 Consider the performance measure [29]

Z =
1

2

∫ 2

0

(ẋ1(t) + ẋ2(t))2dt (5.26)

where

ẋ1(t) = x2(t), ẋ2(t) = −x2(t) + u(t), (5.27)

with the conditions

x1(0) = x2(0) = 0, (5.28)

x1(2) + 5x2(2) = 15. (5.29)
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Figure 5. Plots of state and control functions for n=5
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Figure 6. Plots of exact solutions for state and control functions with[29]



REFERENCES 327

6. Conclusion

In this paper, we presented a numerical scheme for solving quadratic optimal con-
trol problems with liner constrained. The Hemite polynomials was employed. Also
several test problems were used to see the applicability and efficiency of the method.
The obtained results show that the new approach can solve the problem effectively.
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