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Abstract A nonstandard finite-difference (NSFD) scheme for Fisher’s Equation by using Richt-

myer’s (3, 1, 1) implicit formula has been presented, in this work. On nonstandard

finite-difference scheme, two special cases of Richtmyer formula have been applied.
The suitable functions in the denominator fraction of our NSFD scheme have been

replaced to guarantee the highly accurate of the approximation. Furthermore, the

analyses of stability, convergence, consistency for the NSFD method, have been pro-
vided. By calculating the absolute error, the comparison of these methods has been

presented in some Examples and the results have shown that the error of our NSFD
scheme is lower than the others. Finally, a comparison of these methods and the

differential quadrature method (DQM) to solve the Fisher’s Equation reveals that

these techniques work better and give highly accurate results.

Keywords. Fisher’s Equation, Finite- difference scheme, Nonstandard Finite-difference scheme, Consis-

tency, Convergence, Stability.
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1. Introduction

The Fisher Equation describes the process of interaction between diffusion and
reaction. This Equation is encountered in chemistry [2] and population dynamics
[22], which includes problems such as nonlinear evolution of a population in an unclear
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reaction and engineering [3], neurophysiology [20], mathematical biology [11]. This
Equation is defined by

∂u

∂t
= k

∂2u

∂x2
+ αu(1− u), (1.1)

where k is diffusion coefficient and α is reactive factor, t is time, x is distance and
u(x, t) is population density. This Equation will support traveling waves of the form

u(x−ct) moving in the positive x-direction, provided that the speed c > 2
√
kα. There

are many papers of the numerical solution for the Fisher’s Equation such as using
finite-element method [6, 20], Moving mesh method [16, 18], differential quadrature
method [10], Adomian method [7], Since collocation method [1, 23]. We study the
Equation (1.1) with k equal 1, i.e.

∂u

∂t
=
∂2u

∂x2
+ αu(1− u). (1.2)

This paper is organized as follows: Section 2, introduces the computational techniques
to approximate solutions of the model under study, here we prove that our NSFD
method is consistency and convergence to the exact solution and using RR2 and OR4
formula on this NSFD scheme [5, 13], an analysis of nonlinear stability is presented [12,
13]. Section 3, for some Examples the numerical results that illustrate the efficiency of
proposed methods are reported and are compared with the results of [DQM] method
used in [10]. Finally, a conclusion is given in Section 4, all the numerical experiments
presented in this section were computed using the MATLAB 10 on a pc with a 2.5
GHz, 64-bit processor, 4 GB memory.

2. Numerical methods

2.1. Finite-difference Scheme. The main idea behind the Finite difference meth-
ods for obtaining the solution of a given partial differential Equation is to approxi-
mate the derivatives appearing in the Equation by the function at a selected number
of points. The most usual way to generate these approximations is through the use
of Taylor series. Let M and N be positive integers. In order to approximate the
Equation (1.2) over the real line, we restrict our attention to a bounded spatial do-
main [as, bs] and impose appropriate boundary conditions. In order to, approximate
the solution of the Fisher problem under study over a temporal interval [0, T ], we set
0 = t0 < t1 < . . . < tM = T and as = x0 < x1 < . . . < xn = bs of [0, T ], [as, bs],
∆x = bs−as

N and ∆t = T
M . ukn, is the approximation provided by the numerical

method for the exact value of u(xn, tk) for n = 0, . . . , N and k = 0, 1, 2, . . . ,M .

2.2. Nonstandard finite difference scheme. We construct a general NSFD scheme
for the Equation (1.2) by using the Richtmyer’s (3, 1, 1) implicit formula [13, 14].
This formula is a three-point and three-level formula. In this scheme, a weighted av-
erage of finite difference approximation to the time derivative is used. The following
nomenclatures are introduced to approximate the partial derivatives, u with respect
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to t and x at the point (xn, tk).

du

dt
|kn = (1− θ)u

k+1
n − ukn
φ(∆t)

+ θ
ukn − uk−1

n

φ(∆t)
+O((1 + 2θ)∆t, (∆x)

2
), (2.1)

d2u

dx2
|n
k

=
ukn+1 − 2ukn + ukn−1

ψ(∆x)
+O(∆(x)

2
), (2.2)

where,

φ(∆t) =
1− e−∆t

2

1
2

and ψ(∆x) = 4sinh2

(
∆x

2

)
.

By these conventions in hand, we will approximate solutions of Equation (1.2) in the
[as, bs] and [0, T ], through the finite-difference scheme

du

dt
|kn =

d2u

dx2
|k+1
n + αf(uk+1

n ), (2.3)

where

f(uk+1
n ) = uk+1

n (1− ukn). (2.4)

The Nonstandard finite-difference scheme (2.3) may be conveniently rewritten as

A1u
k+1
n+1 +A2u

k+1
n +A1u

k+1
n−1 = A3u

k
n +A4u

k−1
n + α∆tf(uk+1

n ), (2.5)

with

A1 = −R, A2 = 2R+ 1− θ, A3 = 1− 2θ, A4 = θ,

where

R =
φ(∆t)

ψ(∆x)
, (2.6)

is the Fourier number of the NSFD scheme (2.3), the coefficients A1, A2, A3, A4 depend
on ukn. The computational stencil of our method is shown in Figure 1.

Figure 1. Computational stencil for the approximation to the par-
tial differential Equation (1.2) at the time tk by using the NSFD
scheme (2.5).
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2.3. Matrix representation. In this work, we will impose constraints on the form

u(as, t) = a0(t) and u(bs, t) = a1(t), (2.7)

satisfied for every t ≥ 0. Here, a0, a1 are non-negative, real function which is less
than or equal to 1. Let Mn be the vector space of all matrices over R of size (n ∗ n),
for each positive integer n. The numerical method (2.5) can be presented in matrix
form as the following

Auk+1 = bk, (2.8)

for k ∈ {1, . . . ,M − 1}, uk is the (N + 1)-dimensional vector

(uk0 , u
k
1 , · · · , ukN ),

for k ∈ {0, 1, . . . ,M}. We let

bk = Buk + Cuk−1 + dk

+ α∆tdiag{0, f(uk+1
1 ), f(uk+1

2 ) , · · · , f(uk+1
N−1), 0}, (2.9)

for every k ∈ {0, 1, . . .M}, where B and C are the diagonal matrices MN+1 given by

B =



0 0 ... 0 0
0 A3 ... 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 ... A3 0
0 0 ... 0 0


, C =



0 0 ... 0 0
0 A4 ... 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 ... A4 0
0 0 ... 0 0


. (2.10)

The matrix A is a matrix of MN+1, the vector dk is an (n + 1)-dimensional vector.
The system (2.8) can be solved under the method in [19].

By employing discrete Dirichlet constraints in the form of

uk0 = a0(tk),

and

ukN = a1(tk),

for k ∈ {0, 1, . . .M} we have the following presentations of A and dk.

A =



1 0 0 0 · · · 0 0 0
A1 A2 A1 0 · · · 0 0 0
0 A1 A2 A1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · A1 A2 A1

0 0 0 0 · · · 0 0 1


, dk =



a0(tk)
0
...
...
...
0

a1(tk)


. (2.11)

2.4. Numerical properties. In this Section, we show the properties stability and
convergence and consistency for NSFD scheme (2.5).
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2.4.1. Convergence Analysis. The local truncation error of our scheme at (xn, tk) is

`kn = (1− θ)u
k+1
n − ukn
ϕ(∆t)

+ θ
uk+1
n − uk−1

n

ϕ(∆t)
−
uk+1
n+1 − 2uk+1

n + uk+1
n−1

ψ(∆x2)

− αf( uk+1
n ), (2.12)

considering u is the exact solution of (1.2) and using Taylor’s series expansion, we
have

`kn = (1− 2θ)
∆t

2

∂2u

∂t2
∣∣k
n
− (∆x)2

12

∂4u

∂x4

∣∣k+1

n
. (2.13)

we assume that utt, uxxxx are continuous in [0, T ] × [as, bs], so there are constant
K1, K2 such that∣∣`kn∣∣ ≤ K1∆t+K2(∆x)

2 ≡ E.
Rearranging the terms of (2.12) we have

A1u
k+1
n+1 +A2u

k+1
n +A1u

k+1
n−1 = A3u

k
n +A4u

k−1
n + α∆tf( uk+1

n ) + `kn∆t,
(2.14)

Let

ekn = ukn − Ukn ,
that U is numerical solution at (xn, tk). We subtract (2.4) from (2.14) and assume
1− θ ≥ 0.

After taking magnitudes of both sides of the new Equation, the following inequality
is then obtained

A1

∣∣ek+1
n+1

∣∣+A2

∣∣ek+1
n

∣∣+A1

∣∣ek+1
n−1

∣∣ ≤ A3

∣∣ekn∣∣+A4

∣∣ek−1
n

∣∣
+ α∆tK4

∣∣( ek+1
n )

∣∣+ E∆t, (2.15)

where K4 is the maximum magnitude of f ′(u), if we let

ek = max
0≤n≤N

∣∣ekn∣∣ ,
then, the above inequality becomes

Mek+1 ≤ A3e
k +A4e

k−1 + E∆t, (2.16)

that,

M = 1− θ −K4α∆t.

Since e0 = e−1 = 0, from Equation (2.16) we have

ekMk ≤ ((A3 +M)
k−1 − [M(A3 −A4) +M2(A3 −A4)

2

+ · · ·+Mk−2(A3 −A4)
k−2

])E∆t, (2.17)

so ek → 0 as ∆t, ∆x→ 0. Thus we have proved the following theorem.

Theorem 2.1. If the solution of (1.2) has continuous utt, uxxxx in
[as, bs]× [0, T ] then the approximation solution generated by the NSFD scheme (2.5)
convergence to the exact one as ∆t, ∆x→ 0 keeping 0 ≤ θ ≤ 1.
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2.4.2. Stability analysis. Applying the mean value Theorem to the differential opera-
tor (2.9) we get

(A− α∆tdiag{0, f ′(ũk+1
1 ), f ′(ũk+1

2 ), · · · , f ′(ũk+1
N−1), 0})~uk+1

= B~uk + C~uk−1 + dk, (2.18)

or

ρ(Ak) ≤ 1, (2.19)

where

AK = A−∆Ak

= A− α∆tdiag{0, f ′(ũk+1
1 ), f ′(ũk+1

2 ), · · · , f ′(ũk+1
N−1), 0}, (2.20)

it is easy to verify that if 0 ≤ θ ≤ 1 then ‖A‖∞ = 1. Since

ρ(∆Ak) ≤ 1 + αK4∆t,

we have the following inequalities [4].

ρ(Ak) ≤ 1 + αK4∆t, (2.21)

the following theorem is then proved.

Theorem 2.2. The NSFD scheme (2.5) is stable if 0 ≤ θ ≤ 1. The essence of
stability is that there should be a limit to the extent to which any initial error can be
amplified in the numerical procedure. It is easy to see that if the scheme satisfies a
stronger condition

ρ(Ak) ≤ 1, (2.22)

then the initial error will not be amplified at all, in fact, it tends to zero if ρ(Ak) is
strictly less than one. This kind of stability was first studied by O’Brein, Hyman, and
Kaplan [15].

The following theorem shows that the simple implicit scheme is also conditionally
stable in the sense of B.H.K.

Theorem 2.3. If 0 ≤ θ ≤ 1 and ∆t ≤ (1−ρ(A))
αK4

, then ρ(Ak) ≤ 1.

Proof. The key point of the proof is to show that ρ(A) is strictly less than 1. Let L be

one positive integer less than n and vL and N + 1 dimensional vector having sin
Liπ

N
as the ith component for i = 0, 1, · · · , N . It is easy to see that the ith component
AvL is

−R sin
L(i− 1)π

N
+ (2R+ 1− θ) sin

Liπ

N
−R sin

L(i+ 1)π

N
, (2.23)

which can be simplified to

(1− θ − 4Rsin2 Lπ

2N
) sin

Liπ

N
, (2.24)

thus

AvL = µLvL,



336 F. IZADI, H. SABERI NAJAFI, AND A.H. REFAHI SHEIKHANI

showing that vL is an eigenvector of A with eigenvalue µL, where

µL = 1− θ − 4Rsin2Lπ

N
, (2.25)

for 0 ≤ L ≤ N . Therefore if 0 ≤ θ ≤ 1 then

ρ(A) = µL ≺ 1. (2.26)

The rest of proof is just reapplying the inequality

ρ(AK) ≤ ρ(A) + ρ(∆AK),

which is used in the proof of Theorem 2.2. �

2.4.3. Consistency analysis. The local truncation error (LTE) of a numerical method
is an estimate of the error introduced in a single iteration of the method, assuming
that everything fed into the method was perfectly accurate.

Expanding the coefficients

uk+1
n , uk+1

n+1, u
k+1
n−1, u

k−1
n ,

by Taylor series method.

uk+1
n = ukn +

(∆t)

1!

∂u

∂t
+

(∆t)
2

2!

∂2u

∂t2
+

(∆t)

3!

3
∂3u

∂t3
+ · · ·+O(∆t4), (2.27)

uk+1
n+1 = ukn +

(∆x)

1!

∂u

∂x
+

(∆x)
2

2!

∂2u

∂x2
+

(∆x)

3!

3
∂3u

∂x3
+ · · ·+O(∆x4)

+
(∆t)

1!

∂u

∂t
+

(∆t)
2

2!

∂2u

∂t2
+

(∆t)

3!

3
∂3u

∂t3
+ · · ·+O(∆t4), (2.28)

uk+1
n−1 = ukn −

(∆x)

1!

∂u

∂x
+

(∆x)
2

2!

∂2u

∂x2
− (∆x)

3!

3
∂3u

∂x3
+ · · ·+O(∆x4)

+
(∆t)

1!

∂u

∂t
+

(∆t)
2

2!

∂2u

∂t2
+

(∆t)

3!

3
∂3u

∂t3
+ · · ·+O(∆t4), (2.29)

uk−1
n = ukn −

(∆t)

1!

∂u

∂t
+

(∆t)
2

2!

∂2u

∂t2
− (∆t)

3!

3
∂3u

∂t3
+ · · ·+O(∆t4). (2.30)

Now substituting the value of Equation (2.27), (2.28), (2.29), (2.30) in Equation (2.5),
we get

1

∆t
[
∂u

∂t
(∆t) +O(∆t2)] =

1

(∆x2)
[
∂2u

∂(x2)
+O(∆x4)] + αf(uk+1

n ). (2.31)

Local Truncation error for above Equation can be written as,

LTE = lim
∆x,∆t→0

(1− 2θ)
(∆t2)

2!

∂2u

∂t2
+

(∆t3)

3!

∂3u

∂t3

+ · · ·+ 2
(∆x4)

4!

∂4u

∂x4
+ 2

(∆x6)

6!

∂6u

∂t6
+ · · · = 0. (2.32)
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A finite difference representation of PDE is said to be consistent if we can show that
the difference between PDE and it’s FDE representation vanishes as meh is refined.
So we can write as,

lim
mesh→0

(PDE − FDE) = lim
mesh→0

(LTE) = 0. (2.33)

Since ∆t,∆x approaches to zero, so from Equation (2.32), local truncation error be-
comes zero, therefore the NSFD scheme (2.5) is consistent. And solving the Equation
(2.31) and comparing with Equation (2.5) we can say order of our proposed scheme
is first in time and second order in space.

2.4.4. NSFD scheme by using RR2 Formula. By choosing θ = 1/2 in (2.5), we obtain
Richtmyer’s formula, denoted to RR2 [13], which is

−2Ruk+1
n+1 + (4R+ 2− α∆tf(ukn))uk+1

n − 2Ruk+1
n−1 = uk−1

n . (2.34)

This formula is a special case with a greater apparent order of convergence than (2.5)

since it has a truncation error of O((∆x2), (∆t)
2
).

2.4.5. OR4 Formula. By setting

θ = 1/2− 1/12R, (2.35)

in Equation (2.5), the following fourth-order from of Richtmyer’s weighted formula is
obtained

−12R2uk+1
n+1 + (24R2 + 12R− (1− 6R)α∆tf(ukn))uk+1

n − 12R2uk+1
n−1

= 2ukn + (6R− 1)uk−1
n , (2.36)

this formula is denoted OR4.

3. Examples

3.1. Example1. In this Section, two Examples are provided to illustrate the validity
and effectiveness of the proposed methods. The initial and boundary conditions are
directly obtained from analytical solution. Consider the following generalized Fisher’s
Equation in the domain [0, 1]

ut = uxx + αu(1− u), (3.1)

with the initial condition

u(x, 0) =

{
1

2
tanh

(
− α

2
√

2α+ 4
x

)
+

1

2

} 2
α

, (3.2)

the exact solution is presented in [8, 9] by

u(x, t) =

{
1

2
tanh

{
− α

2
√

2α+ 4

(
x− α+ 4√

2α+ 4
t

)}
+

1

2

} 2
α

. (3.3)

In Table 1, we compared the relative errors of the numerical approximations obtained
by NSFD scheme (2.5), (2.34), (2.36) and the exact solution (3.3) with α = 1. The



338 F. IZADI, H. SABERI NAJAFI, AND A.H. REFAHI SHEIKHANI

results show that in most points the error of NSFD scheme (2.5) and the CPUTIME
for this method is lowest. Note that the formula for error is

‖unumerical − uexact‖1,2,∞.

Table 1. Shows the three standard norms of errors for the numeri-
cal approximations are obtained by NSFD scheme (2.5), RR2, OR4
methods respect to the exact solution in Example 1 with α = 1 and
θ = 0.01 the CPU time for each method.

Methods
Norm

∆x = 0.01

∆t = 0.01

∆t = 0.0001

∆x = 0.01

∆t = 0.0002

∆x = 0.01

NSFD

model(2.5)

‖.‖1
‖.‖2
‖.‖∞

8.9592× 10−4

9.5475× 10−5

1.2022× 10−5

2.1071× 10−7

2.7962× 10−8

6.1344× 10−9

3.9300× 10−7

4.5973× 10−8

9.1929× 10−9

CPUTIME(s) • 0.000784 0.004750 0.002469

RR2

model(2.34)

‖.‖1
‖.‖2
‖.‖∞

0.0017

1.8759× 10−4

2.8235× 10−5

2.6213× 10−5

3.4794× 10−6

7.0457× 10−7

5.0308× 10−5

6.6719× 10−6

1.3230× 10−6

CPUTIME(s) 0.001025 0.005089 0.002548

OR4

Model(2.36)

‖.‖1
‖.‖2
‖.‖∞

0.0017

1.8794× 10−4

2.8253× 10−5

1.4834× 10−5

4.9759× 10−6

4.017× 10−7

3.6860× 10−5

4.9033× 10−6

9.7622× 10−7

CPUTIME(s) • 0.000762 0.005140 0.002487

In Table 2, the obtained results with α = 1, ∆t = 0.0001, ∆x = 0.01, are compared
with the exact solutions and the results of DQM [10] for t = 0.5, x = 0.25, 0.5, 0.75.
The results illustrate that our numerical method to solve the Fisher Equation is more
accurate than the DQM [10] method.

Table 2. Shows the comparison of results for the last Example 1
with α = 1, ∆t = 0.0001, ∆x = 0.01.

t x
NSFD

Model(2.5)

DQM

Model[10]
exact error

0.5

0.25

0.5

0.75

0.33409

0.30574

0.27835

0.33412

0.30576

0.27838

0.33409

0.30574

0.27835

0.1823× 10−7

0.1620× 10−7

0.1307× 10−7

Figure 2, shows the graphs for the numerical results of the method. The figure shows
that the numerical and exact solutions are exactly coincident together.
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Figure 2. The graphs of the approximate and exact solutions of
the partial differential Equation (1.2) in Example (1.1) by the
model NSFD (2.5) for x ∈ [0, 1] and several times.
t = 0.25, 0.5, 0.75, the model parameter θ = 0.01 and α = 1 along
with the discrete steps ∆t = 0.001, ∆x = 0.02.

Figure 3, illustrates the graphs of the absolute errors of numerical solutions of NSFD
scheme (2.5), RR2, OR4 in Example1 with α = 1, and ∆t = 0.01, ∆x = 0.05. This
Figure shows that the absolute error for the NSFD scheme of RR2 method has the
most error and the absolute error of NSFD (2.5) is lowest.

Figure 4, illustrates the graph of the absolute error for the numerical method NSFD
(2.5), with α = 1 at different time level, for ∆t = 0.0001, ∆x = 0.01.

3.2. Example2. We now consider the Fisher’s Equation

ut = uxx + 6u(1− u), (3.4)

subject to initial condition

u(x, 0) =
1

(1 + ex)
2 , (3.5)



340 F. IZADI, H. SABERI NAJAFI, AND A.H. REFAHI SHEIKHANI

Figure 3. The graphs of absolute error of NSFD (2.5), OR4and
RR2 model in Example 1 with, α = 1 and ∆t = 0.01, ∆x = 0.05 at
t = 0.5.

Figure 4. The absolute error of NSFD (2.5) model in Example 1
with α = 1 at different time levels using ∆t = 0.0001,
∆x = 0.01.

that the exact solution is given by

u(x, t) =
1

(1 + ex−5t)
2 . (3.6)

In Table 3, we give the absolute error between the exact and numerical
results obtained by the NSFD (2.5) for Equation (3.4) with ∆t = 0.0001,
∆x = 0.01, θ = 0.01 at t = 0.5, t = 0.75 and x = 0.25, 0.5, 0.75.
Table 4, shows the absolute error between the exact and numerical results obtained
by NSFD (2.5) for the Equation (1.2) with various α.



CMDE Vol. 8, No. 2, 2020, pp. 330-346 341

Table 3. Shows the absolute error and CPU TIME of Example 2 with

∆t = 0.0001, ∆x = 0.01, θ = 0.01.

t x error CPUTIME(s)

0.5
0.25
0.5
0.75

0.3823× 10−6

0.2726× 10−6

0.1854× 10−6
0.005085

0.75
0.25
0.5
0.75

0.5075× 10−5

0.4176× 10−5

0.2110× 10−5
0.004486

Table 4. Shows the absolute error and CPUTIME for the results
obtained by NSFD (2.5) with ∆t = 0.0001, ∆x = 0.01,
θ = 0.01 at t=0.5 for α = 2, 3, 4, 5.

α 2 3 4 5

error 0.92490×10−7 0.12804×10−6 0.23619×10−6 0.32994×10−6

CPUTIME(s) 0.004577 0.004861 0.004392 0.005083

Figure 5, shows the (3D) graph of the numerical solution and exact solution of NSFD
(2.5) for Example 2. The figure shows that the numerical and exact solutions are
exactly coincident together.

Figure 5. 3(D) graphs of the approximate and exact solutions of
the partial differential Equation (3.4) in Example (1.2) obtained by
the model NSFD (2.5) with the discrete steps ∆t = 0.0001, ∆x =
0.01.

Figure 6 illustrates the graphs of the absolute errors of numerical solutions of the
NSFD (2.5) with α = 2, 3, 4, 5, 6, for ∆t = 0.0001, ∆x = 0.01, θ = 0.01, t = 0.75 in
Example 2.
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Figure 6. The graphs of absolute error of NSFD (2.5) for α =
2, 3, 4, 5, 6 with ∆t = 0.0001, ∆x = 0.01 at t = 0.75 in Example2.

3.3. Example3. In this Example, we consider a particular case of the Burgers-Huxley
Equation [21].

ut = kuxx + α2uf(u), (3.7)

where

f(u) = (1− u)(u− a). (3.8)

We tacitly let k, α be both equal to 1 in Equation (3.7).
The exact solution for this Equation is given by

u(x, t) =
A exp(z1) + aB exp(z2)

A exp(z1) +B exp(z2) + C
, (3.9)

where

z1 = ± 1√
2
x+ (

1

2
− a)t, (3.10)

z2 = ± 1√
2
ax+ a(

1

2
a− 1)t, (3.11)

and initial condition

u(x, 0) =
A exp(± 1√

2
x) + aB exp(± 1√

2
ax)

A exp(± 1√
2
x) +B exp(± 1√

2
ax) + C

, (3.12)

and A,B, and C are arbitrary constants [17].
In Table 5, we compared the relative errors of the numerical approximations ob-

tained by NSFD Scheme (2.5), (2.34), (2.36) and the exact solution (3.9) for Equation
(3.7) with α = 1, A = B = 1, C = 0, a = 0.999, θ = 0.01, at t = 0.5. The results show
that in most points the error of NSFD scheme (2.5) for this method is lowest. Note
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that the formula for error is ‖unumerical − uexact‖1,2,∞.

Table 5. Shows the three standard norms of errors for the numeri-
cal approximations are obtained by NSFD scheme (2.5), RR2, OR4
methods respect to the exact solution in Example 3 for Equation
(3.7) with α = 1, θ = 0.01, a = 0.999, A = 1, B = 1, C = 0, at t = 0.5
and the CPU time for each method.

Methods
Norm

∆x = 0.01
∆t = 0.01

∆t = 0.0001
∆x = 0.01

∆t = 0.0002
∆x = 0.01

NSFD
model(2.5)

‖.‖1
‖.‖2
‖.‖∞

2.2286× 10−9

2.3789× 10−10

3.0743× 10−11

1.4088× 10−11

1.4244× 10−12

1.4688× 10−13

2.7943× 10−11

2.8366× 10−12

2.9576× 10−13

CPUTIME(s) • 0.000389 0.005057 0.002744

RR2
model(2.34)

‖.‖1
‖.‖2
‖.‖∞

0.0064
6.8972× 10−4

8.8432× 10−5

9.6271× 10−5

9.7236× 10−6

9.9935× 10−7

1.8969× 10−4

1.9224× 10−5

1.9987× 10−6

CPUTIME(s) • 0.000246 0.004656 0.002546

OR4
Model(2.36)

‖.‖1
‖.‖2
‖.‖∞

8.2422× 10−8

8.9698× 10−9

1.1958× 10−9

7.8127× 10−10

7.9033× 10−11

8.1490× 10−12

1.9861× 10−9

2.0182× 10−10

2.1099× 10−11

CPUTIME(s) • 0.000248 0.005140 0.002494

Figure 7, shows the graph of the numerical solution and exact solution of NSFD (2.5)
for Example 3 with a = 0.3, 0.5, 0.9 and α = 1,∆t = 0.001,∆x = 0.5. The figures
show that the numerical and exact solutions are exactly coincident together.

Figure 7. The graphs of the approximate and exact solutions of the

partial differential Equation (3.7) in Example 3 by the model NSFD (2.5)

for x ∈ [0, 1] and t = 0.5, a = 0.3, 0.5, 0.9, θ = 0.01 and α = 1, A = B =

1, C = 0 along with the discrete steps ∆t = 0.001, ∆x = 0.02.
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Figure 8, illustrates the graphs of the absolute errors of numerical solutions of
NSFD scheme (2.5), RR2, OR4 in Example3 with α = 1, a = 0.99 and ∆x = 0.05, θ =
0.01 at t = 0.5. This Figure shows that the absolute error for the NSFD scheme of
RR2 method has the most error and the absolute error of NSFD (2.5) is lowest.

Figure 8. The graphs of absolute error of NSFD (2.5), OR4 and RR2

model in Example 3 with α = 1, a = 0.99 and ∆t = 0.01, ∆x = 0.05, θ =

0.01 at t = 0.5, A = B = 1, C = 0.

Tables 6, 7, illustrate the absolute error between the exact and numerical results
obtained by NSFD (2.5), for the Equation (1.2) and (3.7) with some amount of θ,
these results show that the absolute error of these NSFD schemes depend on θ, when
θ close to zero the NSFD scheme has the lowest absolute error and when θ close to 1,
the NSFD scheme has the most absolute error.

As all the Figures and Tables show, the proposed methods give very accurate
results.
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Table 6. Shows the absolute error for the results obtained
by NSFD (2.5) in Example 1 with ∆t = 0.001, ∆x = 0.01,
θ = 0.001, 0.1, 0.5, 0.6, 0.8, 0.9, α = 1 at t = 0.5.

θ 0.001 0.1 0.5 0.6 0.8 0.9

eror 2.0991× 10−7 2.7539× 10−7 4.5118× 10−6 1.9663× 10−4 0.0027 0.1229

Table 7. Shows the absolute error for the results obtained
by NSFD (2.5) in Example3 with ∆t = 0.001, ∆x = 0.01,
θ = 0.001, 0.1, 0.5, 0.6, 0.8, 0.9, α = 1, a = 0.9 at t = 0.5.

θ 0.001 0.1 0.5 0.6 0.8 0.9

error 3.3062×10−9 1.5508×10−7 1.5324×10−6 4.0175×10−6 7.8328×10−5 9.1389×10−4

4. Conclusion

In this paper, the solution of the Fisher’s Equation was successfully approximated
by a high-order numerical NSFD method. The convergence, consistency and stability
analysis for this NSFD scheme has been proved. We applied two special cases of the
NSFD scheme, (OR4) and (RR2) methods for the Fisher’s Equation and showed that
the original NSFD method has the lowest absolute error and the absolute error of
these NSFD schemes depends on θ, when θ close to zero the NSFD scheme has the
lowest absolute error The numerical results from the method have been compared with
the exact solution and the results [10]. As the numerical results showed, performance
of the methods is in excellent agreement with the exact solution.

It may be concluded that the NSFD method (2.5) and it’s special cases are very
powerful and efficient techniques for finding an approximate solution for various kind
of linear/nonlinear problems.

Note: The data used to support the findings of this study are included in the
article. We have not used any extra data in this article. We have solved the Equation
by a mathematical technique and all the results are inside the paper.
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