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Abstract In this paper, a numerical method based on polynomial approximation is presented for the Riesz
fractional telegraph equation. First, a system of fractional differential equations are obtained
from the telegraph equation with respect to the time variable by using the method of lines. Then
a new numerical algorithm, as well as its modification for solving fractional differential equa-
tions (FDEs) based on the polynomial interpolation, is proposed. The algorithms are designed
to estimate to linear fractional systems. The convergence order and stability of the fractional or-
der algorithms are proved. At the end three examples with known exact solutions are chosen.
Numerical results show that accuracy of present scheme is of order O(∆t2).

Keywords. Fractional telegraph equation, Polynomial approximation, Riemann-Liouville fractional derivative, Riesz fractional

equation, Discretization.

2010 Mathematics Subject Classification. 34A08, 33F05.

1. INTRODUCTION

During the last three decades, fractional calculus has been recently applied to physics and
other natural sciences [29]. Because of recent considerations in science and engineering have
proved that their equations may be explained more exactly by using differential equations of
non-integer order [23]. The use of differential equations of fractional order appears more and
more frequently in several research areas [18]. Kilbas et al. [19] developed differentiation of
fractional order and some of their applications to differential equations. Another distinguish-
ing of their book is that most of the theory of such operations is concerned with functions of
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one variable. Also, they showed different forms of fractional integro-differentiation of func-
tions of multi variables. We refer the interested reader to [25] to experience more application
of the fractional differential equations.

Some numerical schemes have been developed for fractional differential equations and for
an approximation of fractional derivatives by generalized finite differences [10]. Irandoust-
Pakchin et al. [14], proposed a new homotopy perturbation method for solving fractional
order nonlinear cable equation. Also, Javidi and Bashir [16], proposed a numerical method
for solving fractional partial differential equations based on Laplace transforms.

The fractional telegraph equation, as a typical fractional diffusion wave equation, is used
into signal analysis for transmission and modeling of the reaction diffusion. The telegraph
equation is achieved by the variational relationship between the voltage wave and the current
wave on the well-proportional transmission line. So it is also called the transmission line
equation. However, the telegraph equation can not well explain the oddness diffusion event
during the finite long transmits progress, where the voltage wave or the current wave possibly
exists [18]. Therefore it is necessary to inquire the fractional telegraph equation, including
the time and (or) space fractional derivatives.

Asgari et al. maintain telegraph equations are hyperbolic partial differential equations that
are applicable in various branches of engineering and biological sciences in [2]. The authors
of [12], implement the meshless method for solving the time-fractional telegraph equation
by using a radial basis function. In [9], a numerical method introduced to solve fractional
telegraph equation and stability conditions. Also, Povstenko [26], used the fundamental so-
lutions to the nonhomogeneous space-time- fractional telegraph equations, as well as the
associated thermal stresses, are studied in the axisymmetric case. Several articles that their
authors showed analytical solution and numerical analysis of fractional telegraph equation
[4, 13].

In [6], the powerful and effective approximate analytical mathematical tool like homo-
topy analysis method is used to solve the telegraph equation with fractional time derivative.
some schemes proposed for solving telegraph equations with Dirichlet boundary conditions
in [28]. An unconditionally stable fourth-order method for telegraph equation based on her-
mite interpolation introduced in [21]. This method is presented for the numerical solutions
of one-dimensional telegraph equations. Orsinger and Zhao [24], discussed the space frac-
tional telegraph equation by using the Fourier transform technique. Momani [22], gave the
analytic and approximate solutions of space and time-fractional telegraph equation by using
Adomian decomposition. The authors of [31], presented and discussed the semi-discrete and
fully discrete numerical approximations for the time-space fractional telegraph equations.

As a new approach, Celik and Duman [3], used the fractional centered derivative approach
to approximate the Riesz fractional derivative. They applied the Crank-Nicolson method for
the fractional diffusion equation by using fractional centered difference approach. Chen et
al. [5], presented a class of unconditionally stable difference schemes based on the Pade
approximation for the Riesz space fractional telegraph equation. Zhang and Lio [30], used
the fundamental solutions of the space-time Riesz fractional partial differential equations with
periodic conditions.

In this paper, linear interpolation for the time variable and mesh schemes for the space
variable is considered with error analysis and stability. In the same line of thoughts, we
intend to solve Riesz space- fractional telegraph equation by polynomial approximation.



CMDE Vol. 9, No. 1, 2021, pp. 187-210 189

The structure of the paper is as follows. In sections 3 and 4, we present the Riesz space
fractional telegraph equation and revise the previously published theory. In sections 5 and
6, a new numerical solution for solving Riesz space fractional telegraph equation and error
analysis are outlined. Some examples in sections 7 show the accuracy of the present scheme.
The conclusions are included in the last section.

2. PRELIMINARIES

In this section, we present some definitions, preliminary facts and presentation that will be
used further in this study.

Definition 2.1. The Euler’s gamma function is defined by the integral [11]

Γ(z) =
∞∫

0

e−ttz−1dt, Re(z)> 0.

C(J,R) denotes the Banach space of all continuous functions from J = [0, t] into R with the
norm

∥ f∥∞ = sup{| f (t)| : t ∈ J}, T > 0.

Cn(J,R) denotes the class of all real valued functions defined on J = [0, t], T > 0 which
have continuous nth order derivatives.

Definition 2.2. The Caputo fractional derivative of order p > 0 of the function f ∈Cn(J,R)
is defined as [19]:

∂ p

∂ t p f (t) = c
aDp

t f (t) =

 1
Γ(n−p)

t∫
a

f (n)(s)
(t−s)p−n+1 ds, n−1 < p ≤ n, n ∈ N,

f (n)(t), p = n.

Definition 2.3. The left and right Riemann-Liouville derivatives with order p> 0 of the given
function f (x),x ∈ (a,b) are defined as [25]:

R
a Dp

x f (x) =
1

Γ(m− p)
dm

dxm

x∫
a

(x− s)m−p−1 f (s)ds,

and

R
x Dp

b f (x) ==
(−1)m

Γ(m− p)
dm

dxm

b∫
x

(s− x)m−p−1 f (s)ds,

respectively, where m is a positive integer satisfying m−1 ≤ p < m.
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Definition 2.4. The Riesz derivative with order λ > 0 of the given function f (x), x ∈ (a,b)
are defined as [25]:

RZ
a Dλ

b f (x) = cλ (
RZ
a Dλ

x f (x)+ RZ
x Dλ

b f (x)),

where cλ = −1
2cos( λπ

2 )
, λ ̸= 2k+1, k = 0,1,2, .... RZ

a Dλ
b f (x) is sometimes expressed as

∂ λ f (x)
∂ |x|λ

.

Definition 2.5. The Mittag-Leffler function defined by series when the real part of α is
strictly positive [25]

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
,

where Γ is the Gamma function.

Definition 2.6. The Gershgorin circle [27]: Let A be a n× n complex matrix, with entries
ai, j. For i ∈ {1, ...,n} let Ri = ∑

j ̸=i

∣∣ai j
∣∣ be the sum of the absolute values of the non diagonal

entries in the i-th row. Let D(aii,Ri)⊆ C be a closed disc centered at aii with radius Ri.

Theorem 2.7. Gershgorin circle theorem: Every eigenvalue of A lies within at least one of
the Gershgorin discs D(aii,Ri).

Proof. (see [27]). □

3. THE MODEL

If n,m are positive integers and [a,b] , [0,T ] is given, let h = b−a
n , ∆t = T

m . The solution
domain [a,b]× [0,T ] is covered by a uniform grid of mesh points (x, t). Note that h and ∆t
are the uniform spatial stepsize and temporal step size.

For every λ , (1 < λ < 2) the left and right Riemann-Liouville derivatives exist and match
with the left and right Grunwald-Letnikov derivatives under suitable conditions. Then the
Riesz derivatie with order λ , (1< λ < 2) can be discretized By the standard, shifted Grunwald-
Letnikov formulas, or fractional centered difference method [7].
Recently second-order and fourth-order methods are used for the Riesz space and time frac-
tional diffusion equations. It prognosticates that this methods and techniques are useful for
solving some other fractional differential equations with Riesz fractional derivatives.
Now consider the following space-fractional telegraph equation with Riesz operation and fr-
cational derivatives in time over a finite one-dimensional domain

∂ p

∂ t p (
∂ p

∂ t p u(x, t))+2α
∂ p

∂ t p u(x, t)+β 2u(x, t) = η
∂ λ

∂ |x|λ
u(x, t)+ f (x, t), (3.1)
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subject to the initial conditions

u(x,0) = g1(x), a ≤ x ≤ b,

∂ p

∂ t p u(x,0) = g2(x), a ≤ x ≤ b,

and Dirichlet boundary conditions

u(a, t) = u(b, t) = 0, 0 ≤ t ≤ T,

where α > β ≥ 0 and η > 0 are constants, and 1 < λ ≤ 2,0.5 < p < 1.
Equations of the form (3.1) arise in the study of propogation of electrical signals in a cable

of transmission line and wave phenomena. In fact the telegraph equation is more suitable
than ordinary diffusion equation in modeling reaction diffusion [8]. Furthermore, we should
mention that with the appropriate coefficient and forcing terms, the one-dimensional tele-
graph equation describes a diverse array of physical systems; for example, the propogation
of voltage and current signals in coaxical transmissions lines of negligible leakage conduc-
tance and/or resistance [17]. The Riesz fractional derivative was to read from the kinetics of
chaotic dynamics. For the Riesz fractional differential equations, there have remained several
analytical and numerical methods.

The Riesz space fractional operator ∂ λ

∂ |x|λ
over [a,b] is defined by right and left Riemann-

Liouville fractional derivation [25] can be writen as (see [5]).

∂ λ

∂ |x|λ
u(x, t) =− 1

2cos λπ
2

× 1
Γ(2−λ )

× ∂ 2

∂x2

b∫
a

u(s, t)

|x− s|λ−1 ds. (3.2)

4. CONVERTING TO SYSTEM OF FDES

The authors of [15], proposed the chebyshev spectral collocation for one-dimensional lin-
ear hyperbolic telegraph equation. This method is very useful in providing highly accurate
solutions to fractional partial differential equations. Other benefit of this method is using of
spectral differentiation matrices. Yan et al. [1], used polynomial interpolation to design a
novel high-order algorithm for the numerical estimation of fractional differential equations.
They utilized Hadamard finite-part integral and the piecewise cubic interpolation polynomial
to approximate the integral.

In this section, we present our idea to approximate of Riesz space fractional telegraph
equation. We discretize the space-fractional derivative operator through the following frac-
tional central difference [3]:

∂ λ

∂ |x|λ
u(x, t) =− 1

hλ

x−a
h

∑
p=− b−x

h

(−1)pΓ(λ +1)

Γ(λ
2 − p+1)Γ(λ

2 + p+1)
u(x− ph, t)+O(h2)

=− 1
hλ

x−a
h

∑
p=− b−x

h

wpu(x− ph, t)+O(h2),

where h → 0,a ≤ x ≤ b and 1 < λ ≤ 2.
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We introduce a new variable v(x, t) = ∂ p

∂ t p u(x, t) to transform (3.1) to the following equiv-
alent system{ ∂ p

∂ t p u(x, t) = v(x, t),
∂ p

∂ t p v(x, t)+2αv(x, t)+β 2u(x, t) = η ∂ λ

∂ |x|λ
u(x, t)+ f (x, t).

Now, we define u(xi, t) = ui(t),v(xi, t) = vi(t).

By approximating ∂ λ

∂ |x|λ
u(xi, t) by 1

hλ ∑
ρ= xi−a

h

ρ=− b−xi
h

wρ ui−ρ(t) [3], we have
dp

dt p ui(t) = vi(t), i = 1,2,3, ...,n−1,
dp

dt p vi(t)+2αvi(t)+β 2ui(t) =−η 1
hλ ∑

ρ= xi−a
h

ρ=− b−xi
h

wρ ui−ρ(t)+ fi(t),
(4.1)

where wp =
(−1)pΓ(λ+1)

Γ( λ
2 −p+1)Γ( λ

2 +p+1)
.

The above discretization techniques is equivalent to the following form

i = 1, ∑ρ= xi−a
h

ρ=− b−xi
h

wρ ui−ρ(t) = ∑ρ= x1−x0
h

ρ=− xn−x1
h =−(n−1)

wρ u1−ρ(t)

= ∑1
−(n−1) wρ u1−ρ(t),

i = 2, ∑ρ= x2−a
h

ρ=− b−x2
h

wρ u2−ρ(t) = ∑ρ= x2−x0
h

ρ=− xn−x2
h =−(n−2)

wρ u2−ρ(t)

= ∑2
−(n−2) wρ u2−ρ(t),

.

.

.

i = n−1, ∑ρ= xn−1−a
h

ρ=− b−xn−1
h

wρ un−1−ρ(t) = ∑ρ= xn−1−x0
h

ρ=− xn−xn−1
h =−(n−1)

wρ un−1−ρ(t)

= ∑n−1
−1 wρ un−1−ρ(t).

Also from boundary conditions we know that u0(t) = un(t) = 0.
By setting

u(t) = [u1(t),u2(t), ...,un−1(t)]
t ,

v(t) = [v1(t),v2(t), ...,vn−1(t)]
t ,

we can rewrite (4.1), as the following form

{ dp

dt p u(t) = v(t),
dp

dt p v(t) =−Du(t)−2αv(t)+ f (t),
(4.2)

where
D = ηC+β 2In−1.

The matrix In−1 is the identity matrix of order n-1, and
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C =
1

hλ


w0 w−1 . . . w−n+2
w1 w0 . . . w−n+3
. . . .
. . . .
. . . .

wn−2 wn−3 . . . w0


(n−1)(n−1)

.

Let

B =

[
0 −In−1
D 2αIn−1

]
(2n−2)(2n−2)

.

put
X(t) = [u1(t),u2(t), ...,un−1(t),v1(t),v2(t), ...,vn−1(t)]

t .

Then, from (4.2), we obtain{
dp

dt p X(t) =−BX(t)+P(t),
X(0) = X0,

(4.3)

where

P(t) =
[

0
f (t)

]
(2n−2)×1

.

Now, we have the following theorems.

Theorem 4.1. Assume that Wk =
(−1)kΓ(λ+1)

Γ(λ /2+k+1)Γ(λ /2−k+1)
, k = 0,±1,±2, ... are the coefficients

in the fractional central difference (4.1) for 1 < λ ≤ 2. Then

1. w0 > 0.
2. wk = w−k < 0, for all |k| ≥ 1.

3.
∞
∑

k=−∞
wk = 0.

4.
n
∑

k=−m
k ̸=0

|wk| ≤ w0 for any numbers m,n ∈ N.

Proof. (see [19], [5]). □

Theorem 4.2. If matrix A is of the following form

A =


w0 w−1 . . . w−n+2
w1 w0 w−n+3
. .
. .
. .

wn−2 wn−3 w0

 ,

and λ is an eigenvalue of matrix A. Then A is symmetric, strictly diagonally dominant and
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λ ∈ R+.

Proof. (see [5]). □

Theorem 4.3. For the matrix B, we have

∥B∥∞ = Max
{

1,
2η
hλ (W0 +α)+β 2

}
.

Proof. We have

B =



0 0 . . . 0 −1 0 . . . 0

0 0 . . . 0 0 −1 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . −1

η
hλ W0 +β 2 η

hλ W−1 . . . η
hλ W−n+2 2α 0 . . . 0

η
hλ W1

η
hλ W0 +β 2 . . . η

hλ W−n+3 0 2α . . . 0

...
...

. . .
...

...
...

. . .
...

η
hλ Wn−2

η
hλ Wn−3 . . . η

hλ W0 +β 2 0 0 . . . 2α


(2n−2)(2n−2)

,

where Wk =
(−1)kΓ(λ+1)

Γ(λ /2+k+1)Γ(λ /2−k+1)
.

It is obvious that
∀m,n ∈ N :

n
∑

k=−m
k ̸=0

|Wk|=W0.

From definition of ∥B∥∞ = Max
i

∑
j

∣∣bi j
∣∣, we have:

If i = 1,
2n−2
∑
j=1

∣∣b1, j
∣∣= 1,

if i = 2,
2n−2
∑
j=1

∣∣b2, j
∣∣= 1,

.

.

.

if i = n−1,
2n−2
∑
j=1

∣∣bn−1, j
∣∣= 1,

if i = n,
2n−2
∑
j=1

∣∣bn, j
∣∣= ∣∣∣ η

hλ W0 +β 2
∣∣∣+ ∣∣∣ η

hλ W−1

∣∣∣+ ...+
∣∣∣ η

hλ W−n+2

∣∣∣+ |2α|
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=
η
hλ {|W−1|+ |W−2|+ ...+ |W−n+2|}+

∣∣∣ η
hλ W0 +β 2

∣∣∣+2α

=
η
hλ W0 +

∣∣∣ η
hλ W0 +β 2

∣∣∣+2α

=
2η
hλ (W0 +α)+β 2,

if i = n+1,
2n−2
∑
j=1

∣∣bn+1, j
∣∣= 2η

hλ (W0 +α)+β 2,
.
.
.

if i = 2n−2,
2n−2
∑
j=1

∣∣b2n−2, j
∣∣= 2η

hλ (W0 +α)+β 2.

Therefore, we have

∥B∥∞ = Max
{

1,
2η
hλ (W0 +α)+β 2

}

□

5. NUMERICAL METHOD

It is well known that the initial value problem (4.3), is equivalent to the following Volterra
integral equation

X(t) = X(t0)+
1

Γ(p)

∫ t

0
(t − τ)p−1(−BX(τ)+P(τ))dτ. (5.1)

Let Q(t) = −BX(t)+P(t). Now we consider (5.1) at t = tk and rewrite it as the following
form:

X(tk) = X(t0)+
1

Γ(p)

k−1

∑
j=0

∫ t j+1

t j

(tk − τ)p−1Q(τ)dτ. (5.2)

Now we approximate Q(t) by its piecewise linear interpolation Q̄(t) =−BX̄(t)+P(t) at the
nodes t j and t j+1 as the following form

Q̄(t)≃
t − t j+1

t j − t j+1
Q̄(t j)+

t − t j

t j+1 − t j
Q̄(t j+1). (5.3)

Let X̄(t j) be the approximate solution of X(t j), j = 1,2,3, · · · ,k, which have been determined.
By using relations (5.1) and (5.3), we can obtain the following formula

X̄(tk) = X(t0)+
∆t p

Γ(p)

k−1

∑
j=0

(TjQ̄(t j)+R jQ̄(t j+1)), (5.4)
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where

Tj =
(k− j)p(p+1− k+ j)+(k− j−1)p+1

p(p+1)
,

R j =
(k− j)p+1 − (k− j−1)p(p+ k− j)

p(p+1)
.

Therefore, we can rewrite (5.1) as the following form:

X̄(tk) = X(t0)+
∆t p

Γ(p)

k−1

∑
j=0

(Tj(−BX̄(t j)+P(t j))+R j(−B̄̄X(t j+1)+P(t j+1))). (5.5)

Therefore, we have

X̄(tk) =
(

I + ∆t pRk−1B
Γ(p)

)−1{
X(t0)+ ∆t p

Γ(p)

×

(
k−1

∑
j=0

Tj(−BX̄(t j)+P(t j))+
k−2

∑
j=0

R j(−BX̄(t j+1)+P(t j+1))+Rk−1P(tk)

)}
. (5.6)

6. ERROR AND STABILITY ANALYSIS

In this section, the error analysis for the proposed scheme in the previous section is dis-
cussed based on the error estimate of the compound trapezoidal formula. From previous
section, we have

X(tk) = X(0)+
1

Γ(p)

k−1

∑
j=0

∫ t j+1

t j

(tk − τ)p−1Q(τ)dτ,

and

X̄(tk) = X̄(0)+
1

Γ(p)

k−1

∑
j=0

∫ t j+1

t j

(tk − τ)p−1Q̄(τ)dτ.

We can easily get that

X(tk)− X̄(tk) =
1

Γ(p)

k−1

∑
j=0

∫ t j+1

t j

(tk − τ)p−1(Q(τ)− Q̄(τ))dτ, (6.1)

where on each subinterval [t j, t j+1], j = 0,1, ...,n−1, we have

Q(τ)− Q̄(τ) = (τ − t j)(τ − t j+1)
Q′′(ξ j)

2!
, t j < ξ j < t j+1.
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Let ∥X ′′(t)∥∞ = X̄ j for t j ≤ t ≤ t j+1 and
∥∥X̄ j
∥∥

∞ = X̄ .
Therefore, we get

∥X(tk)− X̄(tk)∥∞ =

∥∥∥∥∥ 1
Γ(p)

k−1

∑
j=0

∫ t j+1

t j

(tk − τ)p−1(Q(τ)− Q̄(τ))dτ

∥∥∥∥∥
∞

=
1

2!Γ(p)

k−1

∑
j=0

∫ t j+1

t j

∥∥∥(tk − τ)p−1(τ − t j)(τ − t j+1)(−BX ′′(ξ j))dτ
∥∥∥

∞

≤ 1
2!Γ(p)

k−1

∑
j=0

∫ t j+1

t j

(tk − τ)p−1(τ − t j)(t j+1 − τ)(∥B∥∞
∥∥X ′′(ξ j)

∥∥
∞)

≤ 1
2!Γ(p)

k−1

∑
j=0

∫ t j+1

t j

(tk − τ)p−1(τ − t j)(t j+1 − τ)(∥B∥∞X̄ j)dτ

≤ X̄∥B∥∞
2!Γ(p)

k−1

∑
j=0

∫ t j+1

t j

(tk − τ)p−1(τ − t j)(t j+1 − τ)dτ ≤
X̄∥B∥∞t1+p

k ∆t2

2!Γ(p+1)
.

Therefore ∥X(tk)− X̄(tk)∥∞ = O(∆t2).

Now we give the theoretical stability analysis of our scheme. A numerical initial value
problem solver is stable if small perturbations in the initial conditions do not cause the nu-
merical approximation to diverge away from the true solution provided the true solution of
the initial value problem is bounded [20].

Theorem 6.1. Let X(tk) and X̄(tk) be numerical solutions in (4.3), with the initial conditions
X(t0) and X̄(t0), respectively. Then

∥X(tk)− X̄(tk)∥∞ < ∥X(t0)− X̄(t0)∥∞. (6.2)

for any k, i.e. the new scheme is numerically stable.

Proof. This proof will be used based on mathematical induction. In view of the given initial
condition, suppose that (6.2) is true for (j=1,2,...,k-1). We must prove that this also holds for
j=k.
Assume that

Tj =
−1
t

t j+1∫
t j

(tk − τ)p−1(τ − t j+1)dτ,
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R j =
1
t

t j+1∫
t j

(tk − τ)p−1(τ − t j)dτ.

From (5.2), we can write

X(tk) = X(t0)+
1

Γ(p)

k−1

∑
j=0

t j+1∫
t j

(tk − τ)p−1(τ − t j+1)

t j − t j+1
Q(t j)dτ

+
k−1

∑
j=0

t j+1∫
t j

(tk − τ)p−1(τ − t j)

t j+1 − t j
Q(t j+1)dτ

 .

Then, we have

X̄(tk)−X(tk) = X̄(t0)−X(t0)+
B

Γ(p)

{
k−1

∑
j=0

(Tj(X̄(t j)−X(t j))+R j(X̄(t j+1)−X(t j+1)))

}
.

Also

∥X̄(tk)−X(tk)∥∞ ≤ ∥X̄(t0)−X(t0)∥∞ +
∥B∥∞
Γ(p)

{
k−1

∑
j=1

∣∣Tj
∣∣∥∥X̄(t j)−X(t j)

∥∥
∞

+ |T0|∥X̄(t0)−X(t0)∥∞ +
k−1

∑
j=1

∣∣R j−1
∣∣∥∥X̄(t j)−X(t j)

∥∥
∞ + |Rk−1|∥X̄(tk)−X(tk)∥∞

}
.

Let us

∀ j = 1,2, ...,k−1 :
∥∥X(t j)− X̄(t j)

∥∥
∞ ≤C j∥X(t0)− X̄(t0)∥∞.

Since

|T0| ≤
1
p
(t p

k − t p
k−1)≤

1
p

t p
k =

T p

p
,

|Rk−1|=
1
p

t p

and there is a t j ≤ τ̃ j ≤ t j+1 that

∣∣Tj
∣∣=
∣∣∣∣∣∣−1

t

t j+1∫
t j

(tk − τ)p−1(τ − t j+1)dτ

∣∣∣∣∣∣
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≤
∣∣∣∣ τ̃ j − t j+1

−t

∣∣∣∣
t j+1∫
t j

(tk − τ)p−1dτ ≤ 1
p

∣∣∣∣ t
−t

∣∣∣∣(−(tk − τ)p|t j+1
t j ) =

1
p
(t p

k− j − t p
k− j−1).

Then

k−1

∑
j=1

∣∣Tj
∣∣≤ 1

p
t p
k−1.

Similarly we can drive

k−1

∑
j=1

∣∣R j−1
∣∣≤ 1

p
(t p

k − t p
1 ).

Combining above results, we can derive{
1− |Rk−1|∥B∥∞

Γ(p)

}
∥X̄(tk)−X(tk)∥∞ ≤

{
1+

|T0|∥B∥∞
Γ(p)

}
∥X̄(t0)−X(t0)∥∞

+
∥B∥∞
Γ(p)

{
k−1

∑
j=1

(
∣∣Tj
∣∣+ ∣∣R j−1

∣∣)∥∥X̄(t j)−X(t j)
∥∥

∞

}
.

If N = Max
0≤ j≤k−1

∣∣X̄(t j)−X(t j)
∣∣ , C1 = 1+ |T0|∥B∥∞

Γ(p) ,

since

k−1

∑
j=1

(
∣∣Tj
∣∣+ ∣∣R j−1

∣∣)≤ 1
p
(t p

k−1 + t p
k − t p

1 )≤
2
p

t p
k ≤ 2

p
T p.

we have

∥X̄(tk)−X(tk)∥∞ ≤ 1
Γ(p+1)− t p∥B∥∞

{C1∥X̄(t0)−X(t0)∥∞

+2T p∥B∥∞
Max

0≤ j≤k−1

∣∣X̄(t j)−X(t j)
∣∣}

.

Now, applying the mathematical induction and choosing Cp,T sufficiently large leads to the
end of the proof.

□

7. NUMERICAL EXAMLES

In this section, two examples for which the exact solutions are known are solved by the
proposed method to illustrate the efficiency and effectiveness of the suggested numerical
scheme. We estimate the maximum error and the temporal convergence order of the numeri-
cal solution.
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Example 7.1. Consider the following Riesz space fractional telegraph equation with constant
coefficients

∂ p

∂ t p (
∂ p

∂ t p u(x, t))+2α ∂ p

∂ t p u(x, t)+β 2u(x, t) = µ ∂ λ

∂ |x|λ
u(x, t)+ f (x, t),

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,
u(x,0) = 0, ∂ p

∂ t p u(x,0) = 0.

f (x, t) = x2(1− x)2
{

t1−2pE2,2−2p(−t2)− (2−p)Γ(2)
Γ(2−2p) t1−2p

+2α(t1−pE2,2−p(−t2)− (2−p)Γ(2)
Γ(2−p) t1−p)+β 2 sin t − t

}
+ µ sin t−t

2cos λπ
2

{
Γ(5)

Γ(5−λ ) (x
4−λ +(1− x)4−λ )−2 Γ(4)

Γ(4−λ ) (x
3−λ +(1− x)3−λ )

+ Γ(3)
Γ(3−λ ) (x

2−λ +(1− x)2−λ )
}
.

The above problem has the exact solution u(x, t) = x2(1− x2)(sin t − t).
We use the method of (5.6) to solve this problem for α = 10, β = 5, µ = 1.
The numerical solution are shown in Table 1. In Table 1 with take p = .9, λ = 1.9 we find
that, the numerical results fit well with the theoretical analysis. Figs. 1 and 2 shows the ana-
lytical and numerical solution for u(x, t) = x2(1− x2)(sin t − t). Fig. 3 show the comparison
between the space and time analytical and the numerical solution for h = 1/100.

TABLE 1. Maximum errors and temporal convergence order of example 1
for λ = 1.9.

h=∆t Maximum error Temporal convergence order
.2 1.7087e-4 -
.1 4.3809e-5 1.96360
.05 1.0908e-5 2.00584
.025 2.7224e-6 2.00243
.0125 6.7988e-7 2.00169
.00625 1.6982e-7 2.00127

Example 7.2. Consider the following Riesz space fractional telegraph equation with constant
coefficients

∂ p

∂ t p (
∂ p

∂ t p u(x, t))+2α ∂ p

∂ t p u(x, t)+β 2u(x, t) = µ ∂ λ

∂ |x|λ
u(x, t)+ f (x, t),

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,
u(x,0) = 0, ∂ p

∂ t p u(x,0) = 0.
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FIGURE 1. Analytical solution of example 1.
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FIGURE 2. Numerical solution of example 1 at p = 0.9 and h = 1/100 for
t ∈ [0,1].
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f (x, t) = x2(1− x)2
{

6t3−2p

Γ(4−2p) +
12αt3−p

Γ(4−p) +β 2t3
}
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FIGURE 3. Comparison between the analytical and numerical solutions of
example 1 at p = 0.9 and h = 1/100 for t ∈ [0,1].
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FIGURE 4. Numerical solution of example 1 for several λ at h = 1/10 and
t ∈ [0,1].
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TABLE 2. Maximum errors and temporal convergence order of example 1
for λ = 1.9.

h=∆t The maximum error The temporal convergence order
.2 6.2521e-4 -
.1 1.6263e-4 1.94274
.05 4.0594e-5 2.00226
.025 1.0143e-5 2.00078
.0125 2.5350e-6 2.00042
.00625 6.3357e-7 2.00041

FIGURE 5. Analytical solution of example 2.
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+ µt3

2cos λπ
2

{
Γ(5)

Γ(5−λ ) (x
4−λ +(1− x)4−λ )−2 Γ(4)

Γ(4−λ ) (x
3−λ +(1− x)3−λ )

+ Γ(3)
Γ(3−λ ) (x

2−λ +(1− x)2−λ )
}
.

The above equation has the exact solution u(x, t) = x2(1− x2)t3.
We use the method of (5.6) to solve this problem for α = 25, β = 10, µ = 1.
In this test, corresponding with example 1 the computational results are tabulated in Table
2. We present the convergence behaviors of our method for various kinds of Riesz fractional
order and plural of the word of h and t in Figs. 5,6,7 and 8. The error and convergence order
in time are observed when the temporal step is chosen suitable.
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FIGURE 6. Numerical solution of example 2 at p = 0.9 and h = 1/100 for
t ∈ [0,1].
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FIGURE 7. Comparison between the analytical and numerical solutions
of example 2 at p = 0.9 and h = 1/100 for t ∈ [0,1].
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FIGURE 8. Numerical solution of example 2 for several λ at h = 1/10 and
t ∈ [0,1].
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Example 7.3. Consider the following Riesz space fractional telegraph equation

∂ p

∂ t p (
∂ p

∂ t p u(x, t))+2α
∂ p

∂ t p u(x, t)+β 2u(x, t) = µ
∂ λ

∂ |x|λ
u(x, t)+ f (x, t),

subject to the initial and boundary value conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

u(x,0) = 0, ∂ p

∂ t p u(x,0) = 0, 0 ≤ x ≤ 1,

f (x, t) = x6(1− x)6
{

Γ(1+2σ)
Γ(1+2σ−2p) t

2σ−2p + 2αΓ(1+2σ)
Γ(1+2σ−p) t

2σ−p +β 2t2σ )
}

+ µt2σ

2cos( λπ
2 )

{
Γ(7)

Γ(7−λ ) [(1− x)6−λ + x6−λ ]

− 6Γ(8)
Γ(8−λ ) (x

7−λ +(1− x)7−λ )+ 15Γ(9)
Γ(9−λ ) (x

8−λ +(1− x)8−λ )

− 20Γ(10)
Γ(10−λ ) (x

9−λ +(1− x)9−λ )+ 15Γ(11)
Γ(11−λ ) (x

10−λ +(1− x)10−λ )

− 6Γ(12)
Γ(12−λ ) (x

11−λ +(1− x)11−λ )+ Γ(13)
Γ(13−λ ) (x

12−λ +(1− x)12−λ )
}
.

The above equation has the exact solution u(x, t) = x6(1− x)6t2σ .
We use the method of (5.6) to solve this problem For α = 15, β = 14, µ = 1, σ > p.
The numerical solutions are shown in Table 3. Numerical results show that the convergence
orders are almost second order in maximum error and temporal direction.
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TABLE 3. Maximum errors and temporal convergence order of example 3.

p σ λ h=∆t The maximum error The temporal convergence order
.1 3.6142e-7 -

.8 1 1.2 .05 9.1493e-8 1.98192
.025 2.2910e-8 1.99768

.1 1.8324e-6 -
.8 1 1.8 .05 4.6258e-7 1.98594

.025 1.1588e-7 1.99710

.1 2.3114e-6 -
.8 1 1.9 .05 5.8136e-7 1.99127

.025 1.4550e-7 1.99841

.1 3.9783e-7 -
.8 1.2 1.2 .05 1.0063e-7 1.98311

.025 2.5228e-8 1.99592

.1 1.8270e-6 -
.8 1.2 1.8 .05 4.6134e-7 1.98554

.025 1.1560e-7 1.99665

.1 2.2957e-6 -
.8 1.2 1.9 .05 5.7767e-7 1.99058

.025 1.4462e-7 1.99798

.1 2.3850e-6 -
.9 1.8 1.9 .02 9.6215e-8 1.99472

.004 3.8479e-9 2.00012

Figs. 9 and 10 shows the analytical and numerical solutions of u(x, t) = x6(1− x)6t2σ . Fig.
11 show the comparison between the analytical and numerical solutions of space and time for
h = 1/100, σ = 1, λ = 1.8 .
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FIGURE 9. Analytical solution of example 3.
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FIGURE 10. Numerical solution of example 3 at p = 0.9 and h = 1/100
for t ∈ [0,1].
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FIGURE 11. Comparison between the analytical and numerical solutions
of example 3 at p = .9 and h = 1/100 for t ∈ [0,1].
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FIGURE 12. Numerical solution of example 3 for several λ at h = 1/10
and t ∈ [0,1].
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8. CONCLUSION

This paper provides an iterative solution to the telegraph equation. We made a brief intro-
duction to a approximation based on the piecewise linear interpolation that used for discretiz-
ing of Riesz space fractional telegraph equation. The approximate results approach in analytic
form with order O(∆t2). The conclusions are verified and compared by three numerical ex-
amples. We believe that this approximation will be possible to have a better comprehension
of the telegraph equation in electrical systems and transmission lines.
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