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Abstract In this work, a semialgebraic mode analysis (SAMA) is proposed for investigating
the convergence of a multigrid waveform relaxation method applied to the Finite

Element (FE) discretization of the heat equation in two and three dimensions. This
analysis for finite element methods is more involved and more general than that for
Finite Difference (FD) discretizations, since mass matrix must be considered. The
proposed analysis results in a very useful tool to study the behaviour of the multigrid

waveform relaxation method depending on the parameters of the problem.
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1. Introduction

The Semi-Algebraic Mode Analysis (SAMA) was introduced by Friedhoff and
MacLachlan in [3] for predicting the convergence factor of time-dependent Partial
Differential Equations (PDEs) as a generalization of Local Fourier Analysis (LFA).
LFA is the most powerful technique for predicting the convergence of multigrids meth-
ods [10, 12]. This method analyzes the behavior of the local components involved in
multigrid methods on a basis of complex exponential functions. LFA, however, has
not been successful in predicting the convergence factor for time dependent PDE
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problems [1, 3], and to overcome this failure, SAMA was introduced. The main idea
of SAMA is the combination of LFA only in space with an exact analytical approach
in time. In this work, we utilize SAMA to analyze the convergence factor of multigrid
waveform relaxation applied to finite element discretization of the heat equation.

Let us consider as model problem the heat equation with homogeneous Dirichlet
boundary conditions

Dtu(x, t)−∆u(x, t)) = f(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, on ∂Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rd, for d = 2 (or d = 3) is a bounded domain with boundary ∂Ω.
In order to establish the finite element approximation of our problem, let Ωh be a
triangulation of Ω, satisfying the usual admissibility assumption, i.e. the intersections
of two different elements is either empty, a vertex, or a whole edge. Let Vh be the
finite element space of continuous piecewise bilinear (or trilinear) functions associated
with Ωh vanishing on the boundary ∂Ω. The discrete approximation uh ∈ Vh solves
the following problem

(Dtuh, vh) + a (uh, vh) = (f, vh) vh ∈ Vh,

where

(Dtuh, vh) =

∫
Ω

(Dtuh)vh dx, (f, vh) =

∫
Ω

fvh dx

a (uh, vh) =

∫
Ω

∇uh · ∇vh dx.

Let {ϕ1, . . . , ϕN} be the nodal basis of Vh, i.e., ϕi(xj) = δij , with xj an interior node

of the mesh Ωh. The approximation uh =
∑N

i=1 ui(t)ϕi(x) is found by solving the
following set of equations,

(Dtuh, ϕj) + a (uh, ϕj) = (f, ϕj), for j = 1, 2, . . . , N.

We rewrite these equations in terms of the mass matrix B = {(ϕi, ϕj)} and the
stiffness matrix A = {a(ϕi, ϕj)}, in a more standard form, as a system of ordinary
differential equations (ODEs)

Bhu̇h(t) +Ahuh(t) = Fh(t), uh(0) = gh, t > 0, (1.2)

where uh(t) = [u1(t), u2(t), . . . , uN (t)]t ∈ RN and the coefficient matrices Ah, Bh ∈
RN×N and the right hand side Fh(t) = [(f, ϕ1), (f, ϕ2), . . . , (f, ϕN )]T ∈ RN are con-
sidered.

We have many choices to pick a suitable method for solving the obtained ODE
system (1.2). In general, we can divide all the well known methods into two classes:
time-marching approaches and time parallel techniques. In a time marching approach,
we solve in each time step a time-independent problem then we go to the next time
step. Indeed, as we can get out from its name, each time step will be solved after
the other in a sequential manner, see Figure 1 (left). Although this approach is
simpler, when we need multiprocessing capability or parallelization of the temporal
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Figure 1. Time-stepping (at left) versus waveform relaxation (at
right). In this figure νi, for i = 1, 2, . . . indicates to the iterations of
two methods.

variable we have to seek for another approach. So we consider a full space-time
method. The time parallel class itself can be classified into four groups of methods
(see [5]): Multiple shooting; Domain decomposition and waveform relaxation; Space-
time multigrid method; and Direct time parallel methods. Here, we only concentrate
on the waveform relaxation method and in particular, on its multigrid extension.

The waveform relaxation method (WR) is a technique for solving ordinary differ-
ential equations. It can be also applied to time-dependent PDEs when their spatial
derivatives are replaced by a discrete formula (obtained by the Finite Element method
in our particular case) as viewpoint of the method of lines scheme. The WR method
is based on splitting matrices Ah and Bh as Bh = MBh

−NBh
and Ah = MAh

−NAh
,

leading to the following iteration

MBh
u̇k
h(t) +MAh

uk
h(t) = NBh

u̇k−1
h (t) +NAh

uk−1
h (t) + Fh(t), (1.3)

where uk
h(0) = gh, for k ≥ 1 and uk

h(t) indicates the approximation of u(t) at iteration
k. It is natural to define u0

h(t) along the whole time interval equal to the initial
condition, i.e. u0

h(t) = gh, t > 0. Considering the decomposition of matrices Ah and
Bh as Ah = −LAh

+DAh
−UAh

and Bh = −LBh
+DBh

−UBh
, where LAh

and LBh
are

strictly lower triangular matrices, DAh
and DBh

are diagonal matrices, and UAh
and

UBh
are strictly upper triangular matrices, for the Gauss-Seidel waveform relaxation

method, which is considered in this work, the splittings in (1.3) are as follows:

MAh
= −LAh

+DAh
NAh

= UAh
,

MBh
= −LBh

+DBh
NBh

= UBh
.

We use multigrid technique to accelerate the convergence of the Gauss-Seidel wave-
form relaxation method. A multigrid acceleration of this method was firstly studied
by Lubich and Ostermann in [9] and independently developed in [11].

In order to apply a geometric multigrid waveform relaxation procedure the coars-
ening applies only in the spatial domain and we consider a hierarchy of grids like
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Ω2lh ⊂ . . . ⊂Ω2h ⊂ Ωh. We obtain a new iterate u
(k)
h from the former waveform

u
(k−1)
h in three steps: Pre-smoothing, coarse grid correction and post smoothing. In

Algorithm 1 we present the multigrid waveform relaxation algorithm (WRMG) de-
pending on the defined Gauss-Seidel waveform relaxation method as smoother and the
rest of the operators involved in the multigrid procedure. We consider standard coars-
ening for constructing the coarse meshes and discretization coarse grid approximation
(DCA) in coarser grids. Regarding intergrid transfer operators, the interpolation op-
erators are the nine point stencil operator corresponding to the bilinear interpolation
for two dimensional problems and its generalization for three dimensional problems,
that is, the trilinear interpolation operator. The restriction operators are considered
as the adjoint of the prolongation operators.

Algorithm 1 Multigrid waveform relaxation based on Gauss-Seidel smoother

u
(k)
h (t) → u

(k+1)
h (t)

If we are on the coarsest grid (given by spatial grid size 2lh = h0), then solve
the following equation by a direct or fast solver

Bh0 u̇
k+1
h0

(t) +Ah0u
k+1
h0

(t) = Fh0(t).

Else
(Presmoothing) Perform k1 steps of Gauss-Seidel waveform relaxation,

vkh(t) = Sk1
(
uk
h(t)

)
.

(Coarse grid correction)
Compute the defect

d̄kh(t) = Fh(t)−Bhv̇
k
h(t)−Ahv

k
h(t)

Restrict the defect

d̄k2h(t) = I2hh d̄kh(t)
Perform γ ≥ 1 cycles of WRMG on Ω2h to solve the following defect
equation,

B2hė
k
2h(t) +A2he

k
2h(t) = d̄k2h(t), ek2h(0) = 0

Interpolate the correction

ekh(t) = Ih2he
k
2h(t)

Correct the current approximation with the interpolation of the correction,

vk+1
h (t) = vkh(t) + ekh(t).

(Postsmoothing) Perform k2 steps of Gauss-Seidel waveform relaxation,

uk+1
h (t) = Sk2

(
vk+1
h (t)

)
.

End If

In Algorithm 1, using the Crank-Nicolson approach for time discretization we ob-
tain a space-time multigrid method with coarsening only in space. Thus, we have
time-line Gauss-Seidel waveform relaxation, with standard full weighting restriction
and bilinear interpolation in space for data transfer between the levels in the multigrid
hierarchy.

In the rest of this work, first we explain the two-grid SAMA analysis in two dimen-
sions for Gauss-Seidel waveform relaxation with multigrid acceleration in Section 2.1.
At the end of this section, Section 2.2, we will present our analysis for the considered
model problem (1.2), by defining all required stencils involved in the FE method with
bilinear basis functions. Section 3 is devoted to extending SAMA analysis to three
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dimensions. Again, at the end of Section 3 we perform some analysis for our particu-
lar model problem introducing all necessary stencils for the FE method with trilinear
basis functions. Conclusions are drawn in Section 4.

2. SAMA in two dimensions

2.1. Theoretical framework. Now, we describe the convergence analysis of the
multigrid waveform relaxation method by SAMA. For this end, we will do the follow-
ing steps.

(1) First, we present some primary definitions,
(2) Next, we explain SAMA smoothing analysis for the Gauss-Seidel relaxation

procedure,
(3) Then, we investigate the analysis for the coarse-grid correction operator,
(4) Finally, we combine the two last steps to perform a complete two-grid analysis.

We define the infinite grid Qh = {x = kh = (k1h1, k2h2), k ∈ Z2}, and the so-
called Fourier modes as φh(θ,x) = eiθ·x = eiθ1x1eθ2x2 where h is the spatial dis-
cretization step and θ ∈ Θh = (−π/h, π/h]2. Now, we can define any discrete grid
function for a fixed t as a formal linear combination of the Fourier modes by

uh(x, t) =
∑
θ∈Θh

cθ(t)φh(θ,x), x ∈ Qh, (2.1)

where coefficients cθ(t) depend on the time variable. The Fourier modes yield the so-
called Fourier space F(Qh) = {φh(θ,x), θ ∈ Θh}, and they are formal eigenfunctions
of any discrete operator Lh, e.g. for the standard discrete Laplace operator, Lh =

−∆h = 1
h2 [−1 2 − 1], the expression Lhφh(θ,x) = L̂h(θ)φh(θ,x) holds where

L̂h(θ) =
2

h2
(1− cos(θh)) ,

is the Fourier representation of Lh on the Fourier space, also called formal eigenvalue
or the Fourier symbol of Lh.

Now, we study the effect of Gauss-Seidel relaxation procedure and the coarse-grid
correction operator on the Fourier modes. To reach this goal, we need to define the
high- and low-frequency components with respect to the coarsening strategy. We
consider Θ2h = (−π/2h, π/2h]2 and Θh ∖Θ2h as the low- and high frequency spaces,
respectively. Here, we have used the standard coarsening which means that the step
size is double on the coarse grid, denoted by Q2h.

By considering Ah = MAh
− NAh

and Bh = MBh
− NBh

that have been defined
in the previous section, we can write an iteration of the waveform relaxation method
for an error grid function as:

MBh
ėkh(x, t) +MAh

ekh(x, t) = NBh
ėk−1
h (x, t) +NAh

ek−1
h (x, t), (2.2)

for k ≥ 1, x ∈ Qh and t > 0, where, ek−1
h (·, t) and ekh(·, t) are the error grid functions

at the k − 1 and k iterations and ekh(x, 0) = 0.
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Following equation (2.1), we can write eih(x, t) in the ith iteration as:

eih(x, t) =
∑
θ∈Θh

ciθ(t)φh(θ,x), x ∈ Qh, t > 0. (2.3)

We denote as M̂Ah
(θ), M̂Bh

(θ), N̂Ah
(θ) and N̂Bh

(θ) the symbols of MAh
, MBh

, NAh

and NBh
, respectively. So, for each frequency θ ∈ Θh we have

M̂Bh
(θ)ċkθ(t) + M̂Ah

(θ)ckθ(t) = N̂Bh
(θ)ċk−1

θ (t) + N̂Ah
(θ)ck−1

θ (t), (2.4)

for k ≥ 1, t > 0. Considering a uniform grid in time with M subdivisions and time
step size τ , we apply the Crank-Nicolson time discretization on equation (2.4), given
by

M̂Bh
(θ)

ckθ,i − ckθ,i−1

τ
− N̂Bh

(θ)
ck−1
θ,i − ck−1

θ,i−1

τ

=
1

2

(
−M̂Ah

(θ)ckθ,i + N̂Ah
(θ)ck−1

θ,i

)
+

1

2

(
−M̂Ah

(θ)ckθ,i−1 + N̂Ah
(θ)ck−1

θ,i−1

)
.

(2.5)

Denoting by (ckθ,1, c
k
θ,2, . . . , c

k
θ,M ) the approximation of ckθ(t) on the defined uniform

grid in time, we obtain the following matrix form
ckθ,1
ckθ,2
...

ckθ,M

 = M̃−1
h,τ (θ)Ñh,τ (θ)


ck−1
θ,1

ck−1
θ,2
...

ck−1
θ,M

 ,

where

M̃h,τ (θ) =
1
τ M̂Bh

(θ)+ 1
2 M̂Ah

(θ) 0 ··· 0

− 1
τ M̂Bh

(θ)+ 1
2 M̂Ah

(θ) 1
τ M̂Bh

(θ)+ 1
2 M̂Ah

(θ) ··· 0

...
. . .

. . .
...

0 ··· − 1
τ M̂Bh

(θ)+ 1
2 M̂Ah

(θ) 1
τ M̂Bh

(θ)+ 1
2 M̂Ah

(θ)

 .

We can obtain Ñh,τ (θ) as M̃h,τ (θ) by only substituting M̂(θ) with N̂(θ) in the
above matrix. We can immediately define the smoothing factor of the Gauss-Seidel

relaxation operator by considering its symbol S̃h,τ (θ) = M̃−1
h,τ (θ)Ñh,τ (θ), that is

µ = sup
Θh∖Θ2h

(
ρ
(
S̃h,τ (θ)

))
. (2.6)

Now, we present the analysis of the coarse-grid correction method. As before, we
investigate the effect of the coarse-grid correction, C2h

h , on the Fourier modes. The
coarse-grid correction operator is given by:

C2h
h = Ih − Ih2h(B2hDt +ΣtA2h)

−1I2hh (BhDt +ΣtAh), (2.7)

where Dt and Σt are operators corresponding to the Crank-Nicolson approach and
Ih, I

h
2h, I

2h
h are the identity operator, the transfer operator from coarse to fine grids

and vice versa. Also, (B2hDt+ΣtA2h) and (BhDt+ΣtAh) are the coarse- and fine-grid
operators, respectively.
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Our analysis has to take into account the fact that some of the Fourier modes
φh(θ, ·) on the fine grid coincide on Q2h. For any low frequency θ00 = (θ1, θ2) ∈
Θ2h, we consider the frequencies θα = θ00 − (α1sign(θ1), α2sign(θ2))

π
h , where α =

{(α1, α2)|αj ∈ {0, 1}, j = 1, 2}. The corresponding four Fourier modes φh(θ
α, ·)

are called harmonics of each other and they form the space of 2h− harmonics for
θ = θ00 ∈ Θ2h, as follows

F2h(θ) = span{φh(θ
00, ·), φh(θ

11, ·), φh(θ
10, ·), φh(θ

01, ·)}.

The space of 2h−harmonics is invariant under the coarse-grid correction operator.

Then, the representation of C2h
h on the space F2h is a 4×4 matrix Ĉ2h

h (θ). To be more

precise, we define two vectors: φh(θ, ·) = (φh(θ
00, ·), φh(θ

11, ·), φh(θ
10, ·), φh(θ

01, ·))
and ckθ(t) = (ck

θ00(t), ckθ11(t), ckθ10(t), ckθ01(t)), and then, the error at the k-th iteration

will be ekh(x, t)=
∑

θ∈Θ2h
ckθ(t) φh(θ,x)

T . After applying the coarse-grid correction

operator on this error, we obtain
∑

θ∈Θ2h
Ĉ2h

h (θ)ckθ(t) ·φh(θ, ·), where Ĉ2h
h (θ) is the

following 4× 4 matrix

Ĉ2h
h (θ) = I4 − Îh2h(θ)(B̂2h(θ)Dt +ΣtÂ2h(θ))

−1Î2hh (B̂h(θ)Dt +ΣtÂh(θ)),

where, I4 is the 4 × 4 identity matrix, Â2h(θ) and B̂2h(θ) are 1 × 1 symbols of the
discrete operators on the coarse grid, and the rest of the involved Fourier symbols are
given by:

Âh(θ) = diag
(
Âh(θ

00), Âh(θ
11), Âh(θ

10), Âh(θ
01)

)
,

B̂h(θ) = diag
(
B̂h(θ

00), B̂h(θ
11), B̂h(θ

10), B̂h(θ
01)

)
,

Îh2h(θ) =
(
Îh2h(θ

00), Îh2h(θ
11), Îh2h(θ

10), Îh2h(θ
01)

)T

,

Î2hh (θ) =
(
Î2hh (θ00), Î2hh (θ11), Î2hh (θ10), Î2hh (θ01)

)
.

Now, by considering the time discretization of operators Dt and Σt, we obtain the
following M ×M matrices:

Dt =
1

τ


1 0 · · · 0
−1 1 · · · 0
...

. . .
. . .

...
0 · · · −1 1

 , Σt =
1

2


1 0 · · · 0
1 1 · · · 0
...

. . .
. . .

...
0 · · · 1 1

 ,

Thus, the error after application of the coarse grid correction is given by C̃2h
h,τ (θ)c

k
θ(t) ·

φh(θ, ·)T , where the 4M × 4M matrix C̃2h
h,τ (θ) is:

C̃2h
h,τ (θ) = I4M − Ĩh

2h(θ)
(
K̃2h,τ (θ)

)−1

Ĩ2h
h (θ)K̃h,τ (θ),
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such that I4M is the identity matrix of order 4M and K̃h,τ (θ) is a 4M × 4M matrix
defined as:

K̃h,τ (θ) =


K̃h,τ (θ

00) 0 0 0

0 K̃h,τ (θ
11) 0 0

0 0 K̃h,τ (θ
10) 0

0 0 0 K̃h,τ (θ
01)

 ,

with the following blocks in the diagonal:

K̃h,τ (θ
α) =

1

2τ


2B̂h(θ

α)+τÂh(θ
α) ··· 0

−2B̂h(θ
α)+τÂh(θ

α) 2B̂h(θ
α)+τÂh(θ

α) ··· 0

...
. . .

. . .
...

0 ··· −2B̂h(θ
α)+τÂh(θ

α) 2B̂h(θ
α)+τÂh(θ

α)

 ,

where α = {(α1, α2)|αj ∈ {0, 1}, j = 1, 2}. In a similar way, we can obtain the Fourier
representation of the prolongation and restriction operators, that are 4M × M and
M × 4M matrices, respectively,

Ĩh
2h(θ) =

(
Îh2h(θ

00)IM , Îh2h(θ
11)IM , Îh2h(θ

10)IM , Îh2h(θ
01)IM

)T

,

Ĩ2h
h (θ) =

(
Î2hh (θ00)IM , Î2hh (θ11)IM , Î2hh (θ10)IM , Î2hh (θ01)IM

)
.

Now, we are ready to perform the semi-algebraic two-grid analysis. We do this
by combining the presented Fourier smoothing analysis and the Fourier analysis for
the coarse-grid correction operator. The two-grid operator is defined as T 2h

h,τ =

Sν2

h,τC2h
h,τS

ν1

h,τ , where, Sh,τ is the smoothing operator such that the number of pre-

and post-smoothing iterations are defined by ν1 and ν2, respectively, and C2h
h,τ is the

coarse-grid correction operator.
The invariance property of the two-grid method comes from the invariance property

of both components of this method. To be more precise, the coarse-grid correction
operator, C2h

h,τ , and the considered Gauss-Seidel smoothing operator, Sh,τ , both leave

the space of 2h−harmonics F2h(θ
00) invariant for an arbitrary Fourier frequency

θ00 ∈ Θ2h.
Let us assume again that the error at the kth iteration is given by ckθ(t) ·φh(θ, ·)T .

By using the discretization of operatorsDt and Σt we can obtain the relation T̃ 2h
h,τ (θ)c

k
θ(t)·

φh(θ, ·)T that is the error after the application of the two-grid method, with T̃ 2h
h,τ (θ)

a 4M × 4M matrix, given by

T̃ 2h
h,τ (θ) = S̃ν2

h,τ (θ)

(
I4M − Ĩh

2h(θ)
(
K̃2h,τ (θ)

)−1

Ĩ2h
h (θ)K̃h,τ (θ)

)
S̃ν1

h,τ (θ).
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By considering the Gauss-Seidel smoothing operator, the structure of matrix S̃h,τ (θ)
is as follows

S̃h,τ (θ) =


S̃h,τ (θ

00) 0 0 0

0 S̃h,τ (θ
11) 0 0

0 0 S̃h,τ (θ
10) 0

0 0 0 S̃h,τ (θ
01)

 ,

where the matrix S̃h,τ (θ
α), for α = {(α1, α2)|αj ∈ {0, 1}, j = 1, 2}, has been pre-

viously described in detail. Finally, we can define the estimation of the two-grid
convergence factor by the following expression:

ρ = sup
θ∈Θ2h

(
ρ
(
T̃ 2h
h,τ (θ)

))
. (2.8)

2.2. SAMA results in two dimensions. In this section we apply the SAMA analy-
sis previously introduced to our model problem. We consider a bilinear finite element
discretization on a uniform rectangular mesh to obtain the following discrete problem,

Bhu̇h(t) +Ahuh(t) = Fh(t), uh(0) = gh, t > 0.

When dealing with finite element discretizations of PDEs, the large sparse stiffness
and mass matrices are typically built by the standard assembly procedure [8, 4, 6]. In
the case of dealing with a structured grid, however, it suffices to represent the discrete
operators by means of stencils [2]. The corresponding stencils obtained for the mass
and stiffness matrices in two dimensions are as follows:

Bh =
h2

36

1 4 1
4 16 4
1 4 1

 , Ah =
1

3

−1 −1 −1
−1 8 −1
−1 −1 −1

 .

To apply the presented analysis we also need to define the components of the multigrid
waveform relaxation method. As we stated in the previous sections a Gauss-Seidel
waveform relaxation is considered. Regarding the intergrid transfer operators, the
stencil of the restriction operator, I2hh , is given by

I2hh =
1

16

1 2 1
2 4 2
1 2 1

 .

The prolongation operator Ih2h, is obtained according to the relation I2hh = 1
4I

h
2h, see

[10, 12] for more details.
In Figure 2, we show the obtained results by using the semi-algebraic mode analysis

together with the experimentally computed convergence factors by W(1,1)-cycle. We
analyze the convergence of the presented method depending on the parameter λ =
τ/h2, which represents the anisotropy in the operator. As we can see in the left
picture in Figure 2, the two-grid convergence factor for various values of parameter λ
ranging from 2−12 to 212 is bounded by 0.3117 when matrix Bh is considered as the
mass matrix, as stated before. When we consider Bh as the identity matrix, however,
the upper bound is 0.0695, see the right picture in Figure 2. One can see that the
results when choosing Bh as the identity matrix match with the case in which the
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applied discretization method is the finite difference scheme [7]. In this Figure, two
smoothing steps are considered and the number of time steps are set to 32 (M = 32).
We should notice that this two-grid analysis predicts the asymptotic convergence of
the so-called W-cycle with two smoothing steps. Finally, we would like to mention
that the asymptotic convergence factor of the proposed multigrid waveform relaxation
is very satisfactory concerning the case where h is very small (τ = 10−5 and λ = 212),
where the most iterative procedures lose out.

Figure 2. Two-grid convergence factors predicted by the SAMA
together with the experimentally computed convergence factors by
W(1,1)-cycle for various values of parameter λ = τ/h2. The matrix
Bh is considered as the mass matrix and the identity matrix in the
left and the right pictures, respectively.

3. SAMA in three dimensions

3.1. Theoretical framework. We have to do some changes on the analysis to ex-
tend the SAMA from two dimensions to three dimensions. As we did for the two
dimensional case we need to define first the infinite grid Qh,

Qh = {x = kh = (k1h1, k2h2, k3h3), k ∈ Z3}.

In this case, the Fourier modes are φh(θ,x) = eiθ·x = eiθ1x1eiθ2x2eiθ3x3 where θ ∈
Θh = (−π/h, π/h]3. As in the two dimensional case, any discrete grid function for
a fixed t can be defined as a formal linear combination of Fourier modes . Also, we
obtain a new 8−dimensional Fourier space generated by one low-frequency Fourier
mode θ = θ000 ∈ Θ2h = (−π/2h, π/2h]3 as follows:

F2h(θ) =span{φh(θ
000, ·), φh(θ

111, ·), φh(θ
100, ·),

φh(θ
011, ·), φh(θ

010, ·), φh(θ
101, ·), φh(θ

001, ·), φh(θ
110, ·)},
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such that the high-frequencies are given by the following equation

θα = θ000 − (α1sign(θ1), α2sign(θ2), α3sign(θ3) )
π

h
,

where, θ000 = (θ1, θ2, θ3) and α = {(α1, α2, α3) |αj ∈ {0, 1}, j = 1, 2, 3}.
By the above definitions the resulting Fourier representations of the smoothing,

coarse-grid correction and two-grid operators are 8M × 8M matrices that can be
computed following the same idea carried out in Section 2.1 for the two dimensional
case. So in fact, SAMA in three dimensions is based on a three dimensional spatial
LFA combined with an exact analysis in the time variable.

3.2. SAMA results in three dimensions. Here we consider the discretization of
our model problem by using trilinear finite elements. Similarly to the two dimensional
case, first we define the stencil forms of the mass and stiffness matrices. By some
computations we can obtain the stencils for Bh and Ah in three dimensions as follows:

Bh =
h3

216

1 4 1
4 16 4
1 4 1

 4 16 4
16 64 16
4 16 4

1 4 1
4 16 4
1 4 1

 ,

Ah =
h

12

−1 −2 −1
−2 0 −2
−1 −2 −1

−2 0 −2
0 32 0
−2 0 −2

−1 −2 −1
−2 0 −2
−1 −2 −1

 .

Also, we need to fix the multigrid components. As before, we use a Gauss-Seidel
waveform relaxation and the inter-grid transfer operators are given as follows. The
stencil of the restriction operator, I2hh , is,

I2hh =
1

64

1 2 1
2 4 2
1 2 1

2 4 2
4 8 4
2 4 2

1 2 1
2 4 2
1 2 1

 ,

and the prolongation operator Ih2h will satisfy I2hh = 1
8I

h
2h. In Figure 3, we show

the obtained results by two-grid SAMA analysis in three dimensions together with
the experimentally computed convergence factors by W(1,1)-cycle. As in the two
dimensional case, we analyze the convergence of the presented method accordingly
to parameter λ = τ/h2 (which denotes the anisotropy in the operator). We consider
again two different cases: when Bh is the mass matrix (left picture) and when Bh

is assumed to be the identity matrix (right picture). Here we obtain very similar
results to the two dimensional case. To be more precise, when matrix Bh is the iden-
tity matrix, the results match very good with the case in which a finite difference
discretization method is used. As we expected, the upper bound for the predicted
convergence factor slightly increases for both cases being equal to 0.4040 and 0.0881
when Bh is the mass matrix and identity matrix, respectively. The results are pre-
sented for two smoothing steps and M = 32. Moreover as expected, the asymptotic
convergence factor of the proposed multigrid waveform relaxation is very satisfactory
concerning the case where h tends to be very small.
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Figure 3. Two-grid convergence factors predicted by the SAMA
together with the experimentally computed convergence factors by
W(1,1)-cycle for various values of parameter λ = τ/h2. Matrix Bh

is considered as the mass matrix and the identity matrix in the left
and the right pictures, respectively.

4. Conclusions

In this work, we presented the two-grid SAMA analysis for predicting the con-
vergence factor of a multigrid waveform relaxation method for finite element dis-
cretizations in two and three spatial dimensions. We considered the Crank-Nicolson
discretization in time and bilinear and trilinear finite element methods for the spa-
tial discretization in two and three dimensions, respectively. The presented results
when matrix Bh is the identity matrix, are comparable with the case in which a finite
difference discretization method is used. The proposed SAMA analysis allows us to
systematically study the behavior of the multigrid waveform relaxation method for
finite element discretizations.
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