
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 8, No. 4, 2020, pp. 827-839

DOI:10.22034/cmde.2019.33123.1534

Approximate analytic compacton solutions of the K(p, p) equation
by reduced differential transform method

Turgut Ak∗
Armutlu Vocational School,
Yalova University,
77500 Yalova, Turkey.
E-mail: akturgut@yahoo.com

Sharanjeet Dhawan
Department of Mathematics,
Central University of Haryana,
123029 Haryana, India.
E-mail: dhawan311@gmail.com

Abstract In the present work, we focus on solutions of K(p, p) equation which are solitons with

compact support called compactons. Such a study of compact solitary waves will
help us understanding solitons at a deeper level. One of the interesting feature, they

govern is quasi elastic collision and gaining the same coherent shape again after scat-

tering. Numerical scheme used to study the compacton solutions of K(p, p) equation
is based on reduced differential transform method. Both one dimensional differen-

tial transform method and two dimensional reduced differential transform method

have been used. Test problems under consideration show the efficient working of the
proposed scheme.
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1. Introduction

Being capable of describing a variety of phenomenon, study of nonlinear evolution
equations has always played an important role. So far, authors have developed some
numerical schemes for solving various types of nonlinear PDEs [1, 2, 7, 8, 12, 13].
In earlier studies, a lot of attention was paid towards the soliton solutions. In the
present work, we focus on K(p, p) equation containing the nonlinear dispersion term
which gives rise to solitons with compact support called compactons. Their study
is important as they play a very crucial role in pattern formation and occurrence
of nonlinear structures in various physical systems. Their relevance can be found in
various aspects such as fluid dynamics [4], monochromatic short surface wind waves
[6], shear waves in plates [5].

Initially, Rosenau et al. studied a class of equations possessing solutions as compact
solitary waves with exciting properties as they maintain their coherence after multiple
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collisions [9, 10]. The energy which was lost during the multiple collisions, came again
into existence as compactons and anticompactons. Like compactons, anticompactons
are also same travelling wave travelling in opposite direction with negative amplitude.
These waves exhibit both elastic and nearly elastic collisions that are similar to the
soliton interactions associated with completely integrable partial differential equations
PDEs supporting an infinite number of conservation laws.

In this work, we have used a numerical scheme based on reduced differential trans-
form method. After introductory section, some details of the governing mathematical
model can be found in Section 2 followed by basic definitions in Section 3. Section
4 contains working of the proposed scheme. For experimental studies, two test prob-
lems have been considered for varying values of p under different cases. The errors
for N−approximate compacton solutions are presented through tables whereas errors
for 4−approximate solution can be seen in graphs. Finally, conclusion is drawn and
list of references studied for the successful completion of this work is presented at the
last.

2. Mathematical modelling

Problem under consideration is K(p, p) equation is given by

ut − c0ux + (up)x + (up)xxx = 0 , 1 < p ≤ 3 (2.1)

where u(x, t) is the wave amplitude, x is the spatial coordinate, t is time, and c0 is a
constant velocity.

3. Basic definitions

Some important definitions related to differential transformation are introduced as
follows.

3.1. One dimensional differential transform method. The transformation of
the k-th derivative of a function in one variable is as follows:

If u(t) ∈ R can be expressed as a Taylor series about fixed point t0, then u(t) can be
represented as

u(t) =

∞∑
k=0

u(k)(t0)

k!
(t− t0)k. (3.1)

If un(t) =
∑n
k=0

u(k)(t0)
k! (t − t0)k, is the n-partial sums of a Taylor series equation

(3.1), then

un(t) =

n∑
k=0

u(k)(t0)

k!
(t− t0)k +Rn(t), (3.2)

where un(t) is called the n-th Taylor polynomial for u(t) about t0 and Rn(t) is re-
mainder term. If U(k) is defined as

U(k) =
1

k!

[
dku(t)

dtk

]
t=t0

, (3.3)
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where k = 0, 1, 2, ... then, Eq. (3.1) reduces

u(t) =

∞∑
k=0

U(k)(t− t0)k, (3.4)

and the n-partial sums of a Taylor series equation (3.2) reduces to

un(t) =

n∑
k=0

U(k)(t− t0)k +Rn(t). (3.5)

The U(k) defined in Eq. (3.5) is called the differential transform of function u(t). For
simplicity, we assume t0 = 0. Then, Eq. (3.5) reduces to

un(t) =

n∑
k=0

U(k)tk +Rn(t). (3.6)

From the above definition, it is clear that the roots of differential transform method
lie in Taylor series expansion.

Table 1. The fundamental operations of one-dimensional DTM
Original Function Transformed Function
w (t) = u (t)± v (t) W (k) = U (k)± V (k)

w (t) =
dmu(t)
dtm W (k) =

(k+m)!
k! U (k +m)

w (t) = u (t) v (t) W (k) = U (k) ∗ V (k) =
∑k
r=0 U (r)V (k − r)

w (x) = xm W (k) = δ (k −m) =

{
1
0

k = m
otherwise

w (t) = eλt W (k) = λk

k!

w (t) = sin (αt+ β) W (k) = αk

k! sin
(
kπ
2 + β

)
w (t) = cos (αt+ β) W (k) = αk

k! cos
(
kπ
2 + β

)

3.2. Two dimensional reduced differential transform method. Let us express
the function w(x, t) as w(x, t) = f(x)g(t). Using properties of one dimensional DTM,
it can be represented as

w(x, t) =

∞∑
i=0

F (i)xi
∞∑
j=0

G(j)tj

=

∞∑
i=0

∞∑
j=0

W (i, j)xitj , (3.7)

where W (i, j) = F (i)G(j) is called the spectrum of w(x, t). If w(x, t) is analytical
function in the given domain, then the spectrum function

Wk(x) =
1

k!

[
∂k

∂tk
w(x, t)

]
t=t0

, (3.8)



830 T. AK AND S. DHAWAN

is reduced transformed function of w(x, t). Also, the differential inverse transform of
Wk(x) is defined as

w(x, t) =

∞∑
k=0

Wk(x)(t− t0)k. (3.9)

From (3.8) and (3.9), we get

w(x, t) =

∞∑
k=0

1

k!

[
∂k

∂tk
w(x, t)

]
t=t0

(t− t0)k. (3.10)

Therefore, it can be observed that the concept of reduced differential transform
method is derived from the two dimensional differential transform method.

Table 2. The fundamental operations of two-dimensional RDTM
Original Function Transformed Function
w (x, t) = u (x, t)± v (x, t) Wk (x) = Uk (x)± Vk (x)
w (x, t) = ∂

∂xu (x, t) Wk (x) = d
dxUk (x)

w (x, t) = ∂
∂tu (x, t) Wk (x) = (k + 1)Uk+1 (x)

w (x, t) = ∂r+s

∂xr∂ts u (x, t) Wk (x) =
(k+s)!
k!

dr

dxr Uk+s (x)

w (x, t) = u (x, t) v (x, t) Wk (x) =
∑k
r=0 Ur (x)Vk−r (x)

w (x, t) = u (x, t) v (x, t) z (x, t) Wk (x) =
∑k
r=0

∑k−r
s=0 Ur (x)Vs (x)Zk−r−s (x)

w (x, t) = xmtn Wk (x) = xmδ (k − n) =

{
xm

0
k = n

otherwise

4. Numerical applications

In this section, two test problems are considered to illustrate the performance of the
method for p = 2 and p = 3. The accuracy of the method is measured by using the
absolute error norms. Here, we use compacton solutions of Eq. (2.1) which is given
by [3, 11, 13]

uc (x, t) = αγcos2γ [β (x− x0 − (c− c0)t)] , (4.1)

where c is the compacton velocity, x0 is the position of its maximum at t = 0 and

α =
2cp

p+ 1
, β =

p− 1

2p
, γ =

1

p− 1
. (4.2)

4.1. Case I: (p=2). For p = 2, Eq. (2.1) turns into

ut − c0ux +
(
u2
)
x

+
(
u2
)
xxx

= 0. (4.3)

The compacton solution of Eq. (4.3)

uc (x, t) =
4c

3
cos2

[
1

4
(x− x0 − (c− c0)t)

]
. (4.4)

We consider Eq. (4.3) subject to initial condition

u (x, 0) =
4c

3
cos2

[
1

4
(x− x0)

]
. (4.5)
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Therefore, by applying the reduced differential transform method on Eq. (4.3), for
k = 0, 1, 2, ... we get following recursive equation

(k + 1)Uk+1 (x)− c0
d

dx
Uk (x) + 2

k∑
r=0

Ur (x)
d

dx
Uk−r (x)

+6

k∑
r=0

d

dx
Ur (x)

d2

dx2
Uk−r (x)

+2

k∑
r=0

Ur (x)
d3

dx3
Uk−r (x) = 0,

(4.6)

and their initial value is obtained from initial condition (4.5) as follow

U0 (x) =
4c

3
cos2

[
1

4
(x− x0)

]
, (4.7)

then, by utilizing the initial condition in recursive equation (4.6) for k = 0, 1, 2, 3
the first five terms of Uk+1 (x) obtained as follow

U1 (x) =
c

3
sin
(x

2

)
(c− c0) , (4.8)

U2 (x) = − c

12
cos
(x

2

)
(c− c0)

2
, (4.9)

U3 (x) = − c

72
sin
(x

2

)
(c− c0)

3
, (4.10)

U4 (x) =
c

576
cos
(x

2

)
(c− c0)

4
. (4.11)

Similarly, we can obtain other components using the recurrence relation (4.6). By
substituting the these quantities in inverse differential transform, the approximate
solution of Eq. (4.3) in the Poisson series form is:

U4 (x, t) = U0 (x) + U1 (x) t+ U2 (x) t2 + U3 (x) t3 + U4 (x) t4, (4.12)

U4 (x, t) =
c

576

[
768cos2

(x
2

)
+ 192tsin

(x
2

)
(c− c0)

−48t2cos
(x

2

)
(c− c0)

2 − 8t3sin
(x

2

)
(c− c0)

3

+t4cos
(x

2

)
(c− c0)

4
]
,

(4.13)

which exactly is the first five terms of the Poisson series of the exact solution (4.4).
For p = 2, the obtained 4−approximate compacton solutions are drawn in Figure 1
as 3D and 2D, respectively.

Table 3 shows that as the number of opened terms in the series increases, the approach
gets better slightly and the amount of errors decreases at t = 1. For N−approximate
compacton solutions, this situation is illustrated in Figure 2 in detail.
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On the other hand, Table 4 displays that as the number of opened terms in the
series increases and time progresses, the absolute error norms increase at x = 0. As
seen from the Figure 3, absolute errors for 4−compacton solution increase as time
progresses.

Table 3. The errors for N−approximate compacton solutions of Eq.
(4.3) with c = 1, c0 = 0.5, p = 2 at t = 1

x |u (x, t)− U1 (x, t)| |u (x, t)− U2 (x, t)| |u (x, t)− U3 (x, t)| |u (x, t)− U4 (x, t)|
−20 1.644827× 10−2 1.032390× 10−3 8.790851× 10−5 3.136581× 10−6

−15 5.560644× 10−3 1.660925× 10−3 3.245266× 10−5 5.159681× 10−6

−10 7.538518× 10−3 1.628889× 10−3 3.591003× 10−5 5.130710× 10−6

−5 1.763952× 10−2 9.490233× 10−4 8.999084× 10−5 3.061190× 10−6

0 2.072505× 10−2 1.082811× 10−4 1.082811× 10−4 2.258040× 10−7

5 1.556797× 10−2 1.122521× 10−3 8.350665× 10−5 3.422993× 10−6

10 4.219309× 10−3 1.690320× 10−3 2.552050× 10−5 5.258814× 10−6

15 8.807426× 10−3 1.585857× 10−3 4.261548× 10−5 5.003138× 10−6

20 1.833134× 10−2 8.506784× 10−4 9.380274× 10−5 2.757649× 10−6

Table 4. The errors for N−approximate compacton solutions of Eq.
(4.3) with c = 1, c0 = 0.5, p = 2 at x = 0

t |u (x, t)− U1 (x, t)| |u (x, t)− U2 (x, t)| |u (x, t)− U3 (x, t)| |u (x, t)− U4 (x, t)|
0.0 0.0000000000000 0.0000000000000 0.0000000000000 0.0000000000000

0.5 5.201555× 10−3 6.778153× 10−6 6.778153× 10−6 3.531142× 10−9

1.0 2.072505× 10−2 1.082811× 10−4 1.082811× 10−4 2.258040× 10−7

1.5 4.632825× 10−2 5.467479× 10−4 5.467479× 10−4 2.568465× 10−6

2.0 8.161163× 10−2 1.721708× 10−3 1.721708× 10−3 1.440318× 10−5

2.5 1.260246× 10−1 4.183746× 10−3 4.183746× 10−3 5.480618× 10−5

3.0 1.788741× 10−1 8.625913× 10−3 8.625913× 10−3 1.631499× 10−4

Figure 1. 4−approximate solution for compacton solution of Eq. (4.3)

(a) 3D (b) 2D
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Figure 2. Comparison of absolute errors for N−compacton solution
of Eq. (4.3)

(a) 1−Absolute error (b) 2−Absolute error

(c) 3−Absolute error (d) 4−Absolute error

4.2. Case II: (p=3). For p = 3, Eq. (2.1) turns into

ut − c0ux +
(
u3
)
x

+
(
u3
)
xxx

= 0. (4.14)

The compacton solution of Eq. (4.14)

uc (x, t) =
3c

2
cos

[
1

3
(x− x0 − (c− c0)t)

]
. (4.15)

We consider Eq. (4.14) subject to initial condition

u (x, 0) =
3c

2
cos

[
1

3
(x− x0)

]
. (4.16)
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Figure 3. Absolute errors for 4−compacton solution of Eq. (4.3)
with respect to time

(a) t = 1 (b) t = 2

(c) t = 3

Therefore, by applying the reduced differential transform method on Eq. (4.14), for
k = 0, 1, 2, ... we get following recursive equation

(k + 1)Uk+1 (x)− c0
d

dx
Uk (x) + 3

k∑
r=0

k−r∑
s=0

Ur (x)Us (x)
d

dx
Uk−r−s (x)

+6

k∑
r=0

k−r∑
s=0

d

dx
Ur (x)

d

dx
Us (x)

d

dx
Uk−r−s (x)

+18

k∑
r=0

k−r∑
s=0

Ur (x)
d

dx
Us (x)

d2

dx2
Uk−r−s (x)

+3

k∑
r=0

k−r∑
s=0

Ur (x)Us (x)
d3

dx3
Uk−r−s (x) = 0,

(4.17)
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and their initial value is obtained from initial condition (4.16) as follow

U0 (x) =
3c

2
cos

[
1

3
(x− x0)

]
, (4.18)

then by utilizing the initial condition in recursive equation (4.17) for k = 0, 1, 2, 3
the first five terms of Uk+1 (x) obtained as follow

U1 (x) =
c

4
sin
(x

3

) (
3c2 − 2c0

)
, (4.19)

U2 (x) = − c

48
cos
(x

3

) (
3c2 − 2c0

)2
, (4.20)

U3 (x) = − c

864
sin
(x

3

) (
3c2 − 2c0

)3
, (4.21)

U4 (x) =
c

20736
cos
(x

3

) (
3c2 − 2c0

)4
, (4.22)

Similarly, we can obtain other components using the recurrence relation (4.17). By
substituting the these quantities in inverse differential transform, the approximate
solution of Eq. (4.14) in the Poisson series form is:

U4 (x, t) = U0 (x) + U1 (x) t+ U2 (x) t2 + U3 (x) t3 + U4 (x) t4, (4.23)

U4 (x, t) =
c

20736

[
31104cos

(x
3

)
+ 5184tsin

(x
3

) (
3c2 − 2c0

)
−432t2cos

(x
3

) (
3c2 − 2c0

)2 − 24t3sin
(x

3

) (
3c2 − 2c0

)3
+t4cos

(x
3

) (
3c2 − 2c0

)4]
,

(4.24)

which exactly is the first five terms of the Poisson series of the exact solution (4.15).
For p = 3, the obtained 4−approximate compacton solutions are plotted in Figure 4
as 3D and 2D, respectively.

As seen from Table 5, as the degree of approximation increases, the approach gets
better and the absolute errors decrease at t = 1. N−approximate compacton solutions
are shown in Figure 5 for different values of N .

It can be seen from the Table 6, as time progresses, the absolute error norms increase
at x = 0. Figure 6 demonstrates that the absolute errors for 4−compacton solution
increase as time progresses.
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Table 5. The errors for N−approximate compacton solutions of Eq.
(4.14) with c = 1, c0 = 0.5, p = 3 at t = 1

x |u (x, t)− U1 (x, t)| |u (x, t)− U2 (x, t)| |u (x, t)− U3 (x, t)| |u (x, t)− U4 (x, t)|
−20 7.469477× 10−2 1.519754× 10−1 1.485111× 10−1 1.477955× 10−1

−15 2.467354× 10−1 2.230968× 10−1 2.142179× 10−1 2.144368× 10−1

−10 2.745801× 10−2 1.092642× 10−1 1.074997× 10−1 1.067422× 10−1

−5 2.519921× 10−1 2.440151× 10−1 2.347984× 10−1 2.348723× 10−1

0 2.078515× 10−2 6.254818× 10−2 6.254818× 10−2 6.177658× 10−2

5 2.480129× 10−1 2.559898× 10−1 2.467731× 10−1 2.466992× 10−1

10 6.826649× 10−2 1.353967× 10−2 1.530419× 10−2 1.454673× 10−2

15 2.349434× 10−1 2.585819× 10−1 2.497030× 10−1 2.494841× 10−1

20 1.132457× 10−1 3.596509× 10−2 3.250073× 10−2 3.321629× 10−2

Table 6. The errors for N−approximate compacton solutions of Eq.
(4.14) with c = 1, c0 = 0.5, p = 3 at x = 0

t |u (x, t)− U1 (x, t)| |u (x, t)− U2 (x, t)| |u (x, t)− U3 (x, t)| |u (x, t)− U4 (x, t)|
0.0 0.000000000000 0.000000000000 0.000000000000 0.000000000000

0.5 5.205320×10−3 1.562801×10−2 1.562801×10−2 1.557979×10−2

1.0 2.078515×10−2 6.254818×10−2 6.254818×10−2 6.177658×10−2

1.5 4.663137×10−2 1.408686×10−1 1.408686×10−1 1.369624×10−1

2.0 8.256458×10−2 2.507688×10−1 2.507688×10−1 2.384231×10−1

2.5 1.283354×10−1 3.924979×10−1 3.924979×10−1 3.623571×10−1

3.0 1.836262×10−1 5.663738×10−1 5.663738×10−1 5.038738×10−1

Figure 4. 4−approximate solution for compacton solution of Eq. (4.14)

(a) 3D (b) 2D



CMDE Vol. 8, No. 4, 2020, pp. 827-839 837

Figure 5. Comparison of absolute errors for N−compacton solution
of Eq. (4.14) at t = 1

(a) 1−Absolute error (b) 2−Absolute error

(c) 3−Absolute error (d) 4−Absolute error
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Figure 6. Absolute errors for 4−compacton solution of Eq. (4.14)
with respect to time

(a) t = 1 (b) t = 2

(c) t = 3
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5. Conclusion

A numerical approach based on reduced differential transform method has been pro-
posed and implemented for K(p, p) equation which includes both linear and nonlinear
terms. The results so obtained guarantee the successful implementation of the scheme.
Finally, the errors for N−approximate compacton solutions for different parameters
can be seen in tabular results. Comparison of absolute errors for 4−compacton,
N−compacton solution can be seen via figures. All the results have been found sat-
isfactory.
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