
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 9, No. 1, 2021, pp. 159-179

DOI:10.22034/cmde.2020.30640.1453

A new Monte Carlo method for solving system of linear algebraic
equations

Behrouz Fathi-Vajargah
Department of Statistics, Faculty of Mathematical Sciences,
University of Guilan, P.O. Box: 41335-19141, Rasht, Iran.
E-mail: fathi@guilan.ac.ir, behrouz.fathi@gmail.com

Zeinab Hassanzadeh∗
Department of Applied Mathematics, Faculty of Mathematical Sciences,
University of Guilan, P.O. Box: 41335-19141, Rasht, Iran.
E-mail: hassanzadeh@phd.guilan.ac.ir, hassanzadeh.83@gmail.com

Abstract In this paper, we firstly study the employing of the Monte Carlo method for solving
system of linear algebraic equations and then analyze on convergence of this method.
We propound new results related to the convergence of the Monte Carlo method.
Additionally, we introduce a new Monte Carlo algorithm with effective techniques.

Finally, we compare the efficiency of new Monte Carlo algorithm with its old version
in the numerical experiments.

Keywords. System of linear algebraic equations, Monte Carlo method, Transition probability matrix,

Spectral radius, Ergodic Markov chain.

2010 Mathematics Subject Classification. 65L05, 34K06, 34K28.

1. Introduction

Solving a System of Linear Algebraic Equations (SLAE) is one of the substantial
problems for researchers because of its widespread applications in engineering and
sciences problems such as dynamical systems, circuit analysis, digital signal process-
ing, financial or stochastic modelling and physical problems. The long-standing Monte
Carlo (MC) method provides alternative option for us in selecting a solving method for
SLAEs. Since today’s need for large scale systems has incremented, hence researchers’
tendency to this method has increased. This is because not only MC method has not
the sequential nature but also this method has the parallelism capability on parallel
processors in comparison to the modern deterministic linear solvers.

Exclusive advantages of MC method for solving SLAE and the authors’ motiva-
tion for study in this area have been explained in [13]. Over the past years, we have
observed extensive applications of the MC method in matrix computations by re-
searchers. They improved the MC algorithms for solving SLAE and obtaining Matrix
Inversion (MI) theoretically and numerically. In [11, 12], Fathi-Vajargah first intro-
duced the hybrid MC algorithm for MI. He indicated that the MC approximation of

Received: 1 December 2018 ; Accepted: 19 December 2019.
∗ corresponding.

159

160 B. FATHI-VAJARGAH AND Z. HASSANZADEH

the MI can be combined with a deterministic refinement method to achieve higher
precision and the results can be improved up to the exact inversion. Indeed, the
flexibility of the MC method to reach the result with arbitrary precision is the main
point of this method. Hybrid MC method more discussed to increase the speed of its
computation with parallel computing by Alexandrov et al. in [1]. MC acceleration
schemes combined with the original preconditioned Richardson iterative method in
[4]. An enhanced hybrid method has been recently employed to construct an efficient
stochastic preconditioner for solving SLAE and obtaining MI. Also, this precondi-
tioner is based on Markov Chain Monte Carlo (MCMC) method to estimate a Sparse
Approximate Inverse (SPAI) [2, 5, 8, 26]. Dimov et al. in [9] propounded a new
technique for randomly selecting the indices of the iteration matrix, where the rate of
convergence depends on the balancing of iteration matrix. Recently, Fathi-Vajargah
et al. have exerted improvements on the hybrid MC method for matrix computations
[13]. They have introduced a new version of the MC method for the real and complex
fuzzy system of linear algebraic equations in [14].

In this paper, we study the background of MC method for solving SLAE. We more
discuss on the convergence of this method and intend to present the applicable condi-
tion for convergence of MC method based on the type of transition probability matrix,
especially for large scale matrices. In addition, we provide a new MC algorithm for
SLAE, which is the main purpose of this work.

This article is organized as follows. After studying the necessary details of the
MC method for SLAEs in Section 2, new results on the convergence of MC method
are given in Section 3. We introduce a new MC algorithm in Section 4. Section 5
validates the convergence results and compares the efficiency of new MC algorithm
with its old version in numerical examples. Finally, Section 6 ends this paper with
conclusion.

2. Background of the MC method for solving SLAE

We consider the SLAE

Ax = b, (2.1)

where A ∈ Rn×n is the nonsingular matrix. Also, b ∈ Rn is the known vector so that
every element of it satisfies bi ̸= 0 for all i. To start the MC method, we generally
consider the splitting A = M − N for the SLAE (2.1). Then we can recast (2.1) in
the following iterative scheme

x(k+1) = Tx(k) + f, k = 0, 1, . . . , (2.2)

in which T = M−1N and f = M−1b. We know that the iterative relation (2.2)
converges to the exact solution of the SLAE (2.1) regardless of the initial guess x(0)

if and only if ρ(T) < 1 [24]. In the case ||T || < 1 for some matrix norm ||.||, I − T
is nonsingular and the iteration (2.2) converges for any initial vector x(0) [24]. It is
noted that the used matrix norm in this paper, is considered as the matrix ∞-norm.

CMDE Vol. 9, No. 1, 2021, pp. 159-179 161

Therefore, from (2.2) x can be written in the following form (Neumann series)

x =
∞∑
k=0

T kf. (2.3)

In the early stages of the MC method, we construct an ergodic Markov chain γ : r0 →
r1 → · · · → rk → · · · , by random selecting the indices of T in order to sample the
solution of (2.1). Realization of the stochastic trajectory γ is based on the transition
probabilities, which makes the initial probability vector p ∈ Rn (starting point of
Markov chain γ) and transition probability matrix P ∈ Rn×n (transition from the
current point to the next point) satisfying in the following conditions

pij ≥ 0,
n∑

j=1

pij = 1, if tij ̸= 0 then pij ̸= 0,

pi ≥ 0,

n∑
i=1

pi = 1, if hi ̸= 0 then pi ̸= 0, (2.4)

where the nonzero vector h ∈ Rn is considered to evaluate Euclidean inner product
< h, x >. We restrict h to be ei (i.e., ith standard basis vector) to reach our desired
solution xi. More details on the role of h have been given in [13]. The following
unbiased estimator is defined for the stochastic trajectory γ

X(γ) =
∞∑

m=0

Wmfrm , (2.5)

where Wm = Wm−1wrm−1rm , wrm−1rm =
trm−1rm

prm−1rm
and W0 =

hr0

pr0
, so that mathemat-

ical expectation of X(γ) is the < h, x >, i.e., E[X(γ)] =< h, x > [23]. It is usual to
assume that h = p = ei to estimate the ith component of the solution vector. In this
way, we get E [Xi(γ)] = xi, which is proven by representing the single component of
x in the following form

xi = fi +

∞∑
m=1

n∑
r1=1

n∑
r2=1

· · ·
n∑

rm=1

tir1tr1r2 · · · trm−1rmfrm . (2.6)

Practically, the partial sum Xi(γk) =

k∑
m=0

Wmfrm is applied on finite Markov chain

γk : r0 → r1 → · · · → rk, which its mathematical expectation tends to xi by choosing
k large enough. This truncation leads to systematic error, which is theoretically ex-

pressed as |xi−x
(k)
i | = |E[Xi(γ)]−E[Xi(γk)]| < ϵ, i.e.,

∣∣∣∣∣E[
∞∑

m=0

Wmfrm]− E[
k∑

m=0

Wmfrm]

∣∣∣∣∣ <
ϵ, where ϵ > 0 is the given parameter. Since E[Xi(γ)] = E[

∞∑
m=0

Wmfrm] < ∞, effec-

tive stopping criterion for the continuity of Markov chain’s length to create γk is given

162 B. FATHI-VAJARGAH AND Z. HASSANZADEH

as |Wk| < ϵ. From |Wk| < ϵ the upper bound for k can be driven as the following way

|Wk| = |
tr0r1tr1r2 . . . trk−1rk

pr0r1pr1r2 . . . prk−1rk

| ≤
|tr0r1tr1r2 . . . trk−1rk |

|tr0r1 |
||T ||

|tr1r2 |
||T || . . .

|trk−1rk|

||T ||

≤ ||T ||k < ϵ.

Therefore, it can be deduced that

k ≤ log ϵ

log(||T ||)
. (2.7)

It should be noted that the components of P are considered pij =
|tij |

n∑
j=1

|tij |
, which

introduces the Monte Carlo Almost Optimal (MAO) transition probability matrix [1].
Moreover, (2.7) is definite when ||T || < 1 [11, 23]. Another type of matrix P which has
been applied by the authors is defined as pij =

1
n . This type of P leads to the Uniform

Monte Carlo (UM) method. Now, to approximate the real mean E[Xi(γk)], N sample

paths of Markov chains r
(s)
0 → r

(s)
1 → · · · → r

(s)
k , s = 1, 2, . . . , N is simulated and

then the sample mean of Xi(γ
(s)
k) is considered as its estimation (Strong Law of

Large Numbers (SLLN) [15]). Therefore, Xi(γk) =
1
N

N∑
s=1

Xi(γ
(s)
k) ≈ xi, which leads

to the statistical error. This error theoretically expressed as |Xi(γk)−E[Xi(γk)]| < δ,
where δ is the given parameter. Generally, probable error is employed to estimate the
statistical error. The following relation for a normal random variable X with mean µ
and variance σ2 [25]

p(|X − µ| < 0.675σ) = 0.5 = p(|X − µ| > 0.675σ),

is applied for Xi(γk). So by applying Central Limit Theorem (CLT) [15] it can be
written that

p(|Xi(γk)− E[Xi(γk)]| < rN) ≈ 0.5 ≈ p(|Xi(γk)− E[Xi(γk)]| > rN),

in which rN = 0.6745
√

var(Xi(γ))
N . By applying the precision rN ≤ δ, the lower

bound for N is obtained as N ≥ (0.6745)2var(Xi(γ))
δ2 . On the other, the upper bound

for var(Xi(γ)) can be acquired in the following way

Xi(γ) =

∞∑
m=0

Wmfrm =

∞∑
m=0

tr0r1tr1r2 . . . trm−1rm

pr0r1pr1r2 . . . prm−1rm

frm

≤
∞∑

m=0

tr0r1tr1r2 . . . trm−1rm

|tr0r1 |
||T ||

|tr1r2 |
||T || · · · |trm−1rm |

||T ||

frm ≤
∞∑

m=0

||T ||mfrm ≤ ||f ||
1− ||T ||

.

CMDE Vol. 9, No. 1, 2021, pp. 159-179 163

Thereupon, E[X2
i (γ)] ≤ ||f ||2

(1−||T ||)2 and then var(Xi(γ)) ≤ E[X2
i (γ)] ≤ ||f ||2

(1−||T ||)2 .

Consequently,

N ≥ (0.6745)2

δ2
||f ||2

(1− ||T ||)2
. (2.8)

It should be noted that similar to (2.7) P is considered MAO transition probability
matrix and lower bound for N is obtained by assuming ||T || < 1. At the end of this
section we represent the MC algorithm based on (2.7) and (2.8) (similar form of this
algorithm can be found in [12, 23]).

Algorithm 1:

(1) Input matrix T , vector f , parameters ϵ and δ

(2) Compute k = [log ϵ
log ||T ||], ([x] is the integer part of x)

(3) Compute N = [(0.6745δ)2 ||f ||2
(1−||T ||)2] + 1

(4) Compute P based on the type of probability transition matrix

(5) for i = 1 to n

(6) for s = 1 to N

(7) Set W0 = 1, point = i, X
(s)
i = W0fi

(8) for l = 1 to k

(9) Generate an r.v. nextpoint, distributed on ith row of P as:

(10) Set nextpoint = 1, u = rand

(11) while u >

nextpoint∑
j=1

ppoint,nextpoint

(12) nextpoint = nextpoint+ 1

(13) end while

(14) if tpoint,nextpoint ̸= 0, (this loop can be out of conditional in MAO)

(15) Compute Wl = Wl−1
tpoint,nextpoint

ppoint,nextpoint
, X

(s)
i = X

(s)
i +Wlfnextpoint

(16) end if

(17) Set point = nextpoint

(18) end for

(19) end for

(20) Compute Xi(γk) =
1
N

N∑
s=1

X
(s)
i

(21) Set xi = Xi(γk)

(22) end for

3. Analysis of convergence

In this section, we analyze convergence of the MC method for solving SLAE and
conclude new results. In the early authors’ research, the MC method was implemented

164 B. FATHI-VAJARGAH AND Z. HASSANZADEH

based on the condition ||T || < 1, i.e., Algorithm 1 [11, 23, 26]. Recently, Ji et al. have
theoretically discussed convergence of the MC method in [21]. Based on [21], there is
always a transition matrix P enabling the convergence of the MC method if ||T || < 1.
Also, in the case ρ(T) < 1 and ||T || ≥ 1, the MC method may or may not converge.
Authors in [21] indicated the necessary and sufficient condition for the convergence
of the MC method is

ρ(T ∗) < 1, (3.1)

where t∗ij =
t2ij
pij

. For more details in effect of different cases of the iteration matrix

T and probability transition matrix P on convergence, we refer to [21]. After that in
[13], authors emphasize that validity of Eq. (3.1) should be checked for convergence
regardless of the type of matrix P , MAO or UM transition probability matrix. For
further studying, we refer to [13].

In this work, we intend to replace (3.1) with the simpler computing condition.

For MAO transition matrix we have t∗ij =
t2ij
pij

= |tij |
n∑

k=1

|tik|. By using Hadamard

product, we can write T ∗
MAO in the form T ∗

MAO = T+ ◦ T
′
, where the entries of

nonnegative matrices T+ and T
′
are t+ij = |tij | and t

′

ij =
n∑

k=1

|tik|, respectively. For

more details on the characteristics of the Hadamard product of matrices, we refer
to [19]. Now, we apply some upper bounds for the spectral radius of the Hadamard
product of nonnegative matrices. From [7] and [16], we have the following inequalities,
respectively

ρ(A ◦B) ≤ max
i

{aiibii + tiρ(A)− tiaii}, i = 1, 2, . . . , n, (3.2)

ρ(A ◦B) ≤ max
i ̸=j

1

2
{aiibii + ajjbjj + [(aiibii − ajjbjj)

2 (3.3)

+ 4tisj(ρ(A)− aii)(ρ(B)− bjj)]
1
2 },

where A,B ≥ 0, ti = max
k ̸=i

{bik}, sj = max
k ̸=j

{ajk} and i, j = 1, 2, . . . , n. By assuming

A = T+ and B = T
′
, we have two cases for the matrix T ∗

MAO related to upper bound
(3.2). In first case, we assume that T ≥ 0. Thereupon, we have

ρ(T ∗
MAO) ≤ max

i

{
(

n∑
j=1

tij −
n∑

j=1

tij)tii + ρ(T)
n∑

j=1

tij

}

= ρ(T)max
i

{ n∑
j=1

tij

}
< ||T ||. (3.4)

As we observe by assuming

||T || ≤ 1, (3.5)

CMDE Vol. 9, No. 1, 2021, pp. 159-179 165

the convergence condition ρ(T ∗
MAO) < 1 is satisfied. In second case, we assume that

the condition T ≥ 0 is not satisfied then (3.2) can be computed in the following way

ρ(T ∗
MAO) ≤ max

i

{
(

n∑
j=1

|tij | −
n∑

j=1

|tij |)|tii|+ ρ(T+)
n∑

j=1

|tij |
}

= ρ(T+)max
i

{ n∑
j=1

|tij |
}

= ρ(T+)||T ||. (3.6)

Therefore, by satisfying

ρ(T+)||T || < 1, (3.7)

it is concluded that ρ(T ∗
MAO) < 1, which leads to the convergence of the MC method.

In continuation, we consider the upper bound (3.3) for T ∗
MAO with the case T ≥ 0.

Therefore, we have

ρ(T ∗
MAO) <

1

2
max
i̸=j

{
tii

n∑
k=1

tik + tjj

n∑
k=1

tjk +

[
(tii

n∑
k=1

tik − tjj

n∑
k=1

tjk)
2

+ 4max
k ̸=j

{tjk}
n∑

k=1

tik(1− tii)(

n∑
i,j=1

tij −
n∑

k=1

tjk)

] 1
2
}

=
1

2
max
i̸=j

G1(i, j), i, j = 1, 2, . . . , n, (3.8)

where satisfies the condition

max
i ̸=j

G1(i, j) ≤ 2, (3.9)

guarantees convergence condition ρ(T ∗
MAO) < 1. For the case that T ≥ 0 is not

satisfied, upper bound (3.3) can be computed as

ρ(T ∗
MAO) ≤

1

2
max
i̸=j

{
|tii|

n∑
k=1

|tik|+ |tjj |
n∑

k=1

|tjk|+
[
(|tii|

n∑
k=1

|tik|

− |tjj |
n∑

k=1

|tjk|)2 + 4max
k ̸=j

{|tjk|}
n∑

k=1

|tik|(ρ(T+)− |tii|)

(

n∑
i,j=1

|tij | −
n∑

k=1

|tjk|)
] 1

2
}

=
1

2
max
i̸=j

G2(i, j), i, j = 1, 2, . . . , n. (3.10)

It can be seen that if

max
i ̸=j

G2(i, j) < 2, (3.11)

166 B. FATHI-VAJARGAH AND Z. HASSANZADEH

then ρ(T ∗
MAO) < 1. Similarly, we iterate the same process for UM transition proba-

bility matrix. Because of t∗ij =
t2ij
pij

= nt2ij , T
∗
UM can be written in the form

T ∗
UM = n(T+ ◦ T+) = nT+◦2, (3.12)

where T+◦2 denotes the Hadamard second power (entrywise second power) of T+.
By setting A = B = T+, we can compute the upper bound (3.2) for the case T ≥ 0
as follow

ρ(T ∗
UM) ≤ nmax

i
{t2ii +max

k ̸=i
{tik}(ρ(T)− tii)}

< nmax
i

{t2ii +max
k ̸=i

{tik}(1− tii)} = nF1(i). (3.13)

In the event that the following condition

F1(i) ≤
1

n
, (3.14)

implies ρ(T ∗
UM) < 1. For the case T ≥ 0 is not satisfied, upper bound (3.2) can be

computed in the following way

ρ(T ∗
UM) ≤ nmax

i
{t2ii +max

k ̸=i
{|tik|}(ρ(T+)− |tii|)} = nF2(i). (3.15)

If the condition

F2(i) <
1

n
, (3.16)

is satisfied then ρ(T ∗
UM) < 1 and the MC method is convergent. For the upper bound

(3.3) by considering T ≥ 0, we have

ρ(T ∗
UM) <

n

2
max
i ̸=j

{
t2ii + t2jj + [(t2ii − t2jj)

2 + 4max
k ̸=i

{tik}max
k ̸=j

{tjk}

(1− tii)(1− tjj)]
1
2

}
=

n

2
max
i ̸=j

H1(i, j), (3.17)

where i, j = 1, 2, . . . , n. We observe that by satisfying

max
i ̸=j

H1(i, j) ≤
2

n
, (3.18)

the convergence condition ρ(T ∗
UM) < 1 is valid. Also, in the case T ≥ 0 is not satisfied,

we get the following relations for T ∗
UM

ρ(T ∗
UM) ≤ n

2
max
i ̸=j

{
t2ii + t2jj + [(t2ii − t2jj)

2

+ 4max
k ̸=i

{|tik|}max
k ̸=j

{|tjk|}(ρ(T+)− |tii|)(ρ(T+)− |tjj |)]
1
2

}
=

n

2
max
i ̸=j

H2(i, j), i, j = 1, 2, . . . , n. (3.19)

Hence, by satisfying

max
i ̸=j

H2(i, j) <
2

n
, (3.20)

CMDE Vol. 9, No. 1, 2021, pp. 159-179 167

we conclude that ρ(T ∗
UM) < 1 and MC method is convergent with UM transition

probability matrix. A lot of research has been made about the upper bound for the
spectral radius of the Hadamard product of nonnegative matrices in [6, 10, 17, 20, 22].
Of all this, we invoke the sharper and less computational complexity upper bounds
which are efficient for the large scale matrices and lead to validation of the convergence
condition (3.1). Based on Eqs. (3.5-3.11) and (3.14-3.20) for MAO and UM transition
matrices respectively, we can theoretically derive that ρ(T ∗

MAO) < 1 is valid for a wider
group of matrices than ρ(T ∗

UM) < 1. This result is also shown in numerical results.
Moreover, we indicate that the upper bound (3.2) is more efficient than (3.3) for MAO
and UM matrices in numerical results.

4. A new MC method for solving SLAE

In this section, we present new MC algorithm based on the obtained results in
the convergence analysis by employing effective techniques. We know that mentioned
upper bound (2.7) for k is based on the assumption ||T || < 1, while MC method
is convergent if (3.1) is satisfied (or more convenience, conditions (3.5-3.11), (3.14-
3.20) are satisfied). Therefore, we consider the stopping condition |Wk| < ϵ for
continuity the length of Markov chains. In this case, we get the unique length for
each stochastic sample (Markov chain) for every component of solution vector x, i.e.,

k
(s)
i , i = 1, 2, . . . , n, s = 1, 2, . . . , N are different.
On the other, lower bound (2.8) is obtained when ||T || < 1. We replace (2.8) with

the following stopping condition for the number of stochastic samples to estimate the
each component of the solution vector∣∣∣∣ 1

s+ 1

s+1∑
t=1

X
(t)
i (γ

k
(t)
i

)− 1

s

s∑
t=1

X
(t)
i (γ

k
(t)
i

)

∣∣∣∣ < δ, i = 1, 2, . . . , n. (4.1)

We consider s, which is satisfied in (4.1), as the number of required Markov chains for
xi, i.e., Ni. Indeed, we control the statistical error with the given parameter δ in this
way. Therefore, the number of Markov chains Ni, i = 1, 2, . . . , n are distinctive per
xi, i = 1, 2, . . . , n. Moreover, the required length of Markov chains can be represented

as k
(si)
i , si = 1, 2, . . . , Ni, i = 1, 2, . . . , n, which are different from each other. Now,

we display a new MC algorithm in the following way. At first we demonstrate the

computing of estimator X
(si)
i (γ

k
(si)

i

) in each Markov chain per component of x as the

following function.

function [Xi ki] = Markov(i, ϵ), (Markov is the name of function)

Set W0 = 1, ki = 0, point = i, Xi = W0fi

while |Wk| ≥ ϵ

Generate an r.v. nextpoint, distributed on ith row of matrix P as:

Set nextpoint = 1, u = rand

while u >

nextpoint∑
j=1

ppoint,nextpoint

168 B. FATHI-VAJARGAH AND Z. HASSANZADEH

nextpoint = nextpoint+ 1

end while

Set ki = ki + 1

if tpoint,nextpoint ̸= 0, (this loop can be out of conditional in MAO)

Compute Wk = Wk−1
tpoint,nextpoint

ppoint,nextpoint
, Xi = Xi +Wkfnextpoint

end if

Set point = nextpoint

end while

end function

In continuation, we provide a new MC algorithm, included the function Markov, in
Algorithm 2.

Algorithm 2:

(1) Input matrix T , vector f , parameters ϵ and δ

(2) Compute P based on the type of probability transition matrix

(3) for i = 1 to n

(4) Set s = 1, Error = 1

(5) Compute [X
(s)
i k

(s)
i] = Markov(i, ϵ)

(6) Compute X0 = 1
sX

(s)
i

(7) Set Xi = X
(s)
i , Ki(s) = k

(s)
i (sth component of vector Ki illustrates the

length of sth Markov chain for xi)

(8) while Error ≥ δ

(9) Set s = s+ 1

(10) Compute [X
(s)
i k

(s)
i] = Markov(i, ϵ)

(11) Set Xi = Xi +X
(s)
i

(12) Set X1 = 1
sXi

(13) Compute Error = |X1 −X0|

(i.e., Error =

∣∣∣∣ 1
s+1

s+1∑
t=1

X
(t)
i (γ

k
(t)
i

)− 1

s

s∑
t=1

X
(t)
i (γ

k
(t)
i

)

∣∣∣∣)
(14) Set X0 = X1

(15) Set Ki(s) = k
(s)
i

(16) end while

(17) Set Ni = s

(18) Set xi = X1 (i.e., xi =
1
Ni

Ni∑
t=1

X
(t)
i (γ

k
(t)
i

))

(19) end for

CMDE Vol. 9, No. 1, 2021, pp. 159-179 169

We can observe that the systematic and statistical error can be controlled with
given parameters ϵ and δ, respectively in Algorithm 2 and the number of Markov
chains per xi, i = 1, 2, . . . , n is distinctive unlike Algorithm 1. Moreover, the length
of Markov chain per statistical sample for each component of solution vector is unique,
which is the prominent difference between the Algorithm 2 and Algorithm 1. By ap-
plying the stopping conditions |Wk| < ϵ and (4.1) for the length and number of Markov

chains, we can obtain the optimum Ni and k
(t)
i , i = 1, 2, . . . , n, t = 1, 2, . . . , Ni. In

this way, the complexity of computing is significantly reduced, which indicates the
superiority of Algorithm 2 to Algorithm 1. Since the stopping conditions for continu-

ity Ni and k
(t)
i are implemented separately, so increasement any of them is stopped

as soon as the related stop criteria of each one is satisfied. This feature improves the
execution speed of Algorithm 2, while the fix value of k and N in rows 2 and 3 makes
the Algorithm 1 be time consuming. These results have been illustrated in numerical
experiments.

It is worthy to note that we can employ Algorithm 2 for finding MI, in general.
For more details in this area, we refer to [13].

5. Numerical examples

In this section, we present performance of Algorithm 2 by some numerical examples.
All computations are implemented in double precision using some MATLAB codes on
a Pentium 5 PC, with a 3.20 GHz CPU and 4GB of RAM. We know that the superi-
ority of MC method to deterministic linear solvers is apparent when implementing on
parallel processors for large scale matrices. However, we intend to numerically verify
the validity of convergence results and efficiency of new MC algorithm.

Example 5.1. In this example, we numerically demonstrate the convergence behavior
of MC method with MAO and UM transition probability matrices. Moreover, we
investigate the proximity of the upper bounds (3.2) and (3.3) to real values of ρ(T ∗

MAO)
and ρ(T ∗

UM). We also check the satisfying condition (3.5-3.11) and (3.14-3.20) based
on the convergence condition (3.1). We consider the Symmetric Positive Definite
(SPD) matrices 685 BUS, 494 BUS and 662 BUS of the order n = 685, 494 and
662, respectively as the coefficient matrix A in the SLAE (2.1). These matrices are
selected from the well-known collection of the matrices in the Matrix Market website
[27].

We consider the splitting of SOR method for ω = 1 and then we achieve the
iteration matrix T = (D − E)−1F , where D, −E and −F are the diagonal, strict
lower part and strict upper part of A, respectively. In this way, we have ρ(T) < 1 [24].
We construct T ∗

MAO related to the MAO transition probability matrix. According to
the presented numerical results in Table 1, we have ||T || = 1 and ρ(T ∗

MAO) < 1 for
these matrices, which lead to the convergence of MC method with MAO transition
matrix. Also, we observe that upper bound (3.4) is closer to real value of ρ(T ∗

MAO)
than upper bound (3.8). Moreover, satisfying condition (3.5) is in accordance with
the validity of condition ρ(T ∗

MAO) < 1. It should be noted that for these matrices
with the mentioned splitting, we have T ≥ 0. Therefore, we use the upper bound (3.4)

170 B. FATHI-VAJARGAH AND Z. HASSANZADEH

Table 1. Behavior of the convergence of MC method with MAO
transition probability matrix related to the convergence condition
(3.1) and proximity of the upper bounds (3.2) and (3.3) to ρ(T ∗

MAO).

Matrix ||T || ρ(T) ρ(T ∗
MAO) (3.4) (3.5) (3.8) (3.9)

685 BUS 1.0000 0.9995 0.9994 1.0000 Satisfied 26.0999 Not satisfied
494 BUS 1.0000 0.9999 0.9999 1.0000 Satisfied 22.1402 Not satisfied
662 BUS 1.0000 0.9999 0.9999 1.0000 Satisfied 25.6716 Not satisfied
A (n = 40) 1.0018 0.9960 0.9968 1.0018 Satisfied 4.0082 Not satisfied
A (n = 60) 1.0018 0.9992 1.0007 1.0018 Not satisfied 4.9036 Not satisfied
A (n = 70) 1.0018 0.9999 1.0015 1.0018 Not satisfied 5.2919 Not satisfied
B (n = 100) 1.0000 0.9637 0.9637 1.0000 Satisfied 6.4760 Not satisfied
B (n = 300) 1.0000 0.9657 0.9656 1.0000 Satisfied 11.2984 Not satisfied
B (n = 500) 1.0000 0.9654 0.9662 1.0000 Satisfied 14.6071 Not satisfied

and (3.8) (i.e., first case of upper bounds (3.2) and (3.3) with MAO matrix). Now,
we consider the tridiagonal matrix A = tridiag(−0.55, 1.099,−0.55) of order n. From
analysis of eigenvalues of tridiagonal matrices, we can derive that the eigenvalues of A
is positive [18]. Since A is symmetric matrix, we can derive that A is the SPD matrix
[18]. We employ the mentioned splitting (SOR splitting with ω = 1) for A. Therefore,
it can be derived that ρ(T) < 1. We observe similar convergence behavior for this
matrix. For example in fifth row of Table 1 (n = 60) condition (3.5) is not satisfied
and this is consistent with ρ(T ∗

MAO) = 1.0007. Therefore, in this row of Table 1, MC
method is not convergent. Additionally, upper bound (3.4) is closer to real value of
ρ(T ∗

MAO) than upper bound (3.8). In continuation of this example, we consider the
toeplitz matrix B = fivediag(−1,−2, 7,−1,−3) of order n. From [3], we know that
B is M-matrix. By employing the iteration matrix T = I − D−1B we derive that
ρ(T) < 1, where diagonal matrix D is considered as D = diag(b11, b22, . . . , bnn) [24].
We obtain similar numerical results for various values of n for matrix B in rows 7 to 9
of Table 1. Once again, we provide numerical results for the mentioned matrices with
UM transition probability matrix in Table 2. In all rows of Table 2, the condition
ρ(T ∗

UM) < 1 and then (3.14) are not satisfied. Similar to Table 1, it is visible that
upper bound (3.13) is close to the real value of ρ(T ∗

UM) than upper bound (3.17). As
it has been mentioned in Section 3, from shown numerical results in Table 1 and 2 we
can deduce that the MC method with UM transition probability matrix is convergent
for the group of very few matrices than MAO matrix. Consequently, UM transition
probability matrix is practically set aside. Finally, we select the matrix DWB 512
from the Matrix Market website. By exerting the splitting of SOR method for ω = 1,
we achieve ρ(T) < 1. Related numerical results for DWB 512 with MAO and UM
transition probability matrices are illustrated in Table 3 and 4, respectively. Because
T ≥ 0 is not satisfied, we apply the corresponding upper bounds (3.6), (3.10) and
(3.15), (3.19) for MAO and UM matrices, respectively. For this matrix, we also attain
the similar numerical results in Table 3 and 4 as Table 1 and 2.

CMDE Vol. 9, No. 1, 2021, pp. 159-179 171

Table 2. Behavior of the convergence of MC method with UM tran-
sition probability matrix related to the convergence condition (3.1)
and proximity of the upper bounds (3.2) and (3.3) to ρ(T ∗

UM).

Matrix ρ(T ∗
UM) Upper bound (3.13) (3.14) Upper bound (3.17) (3.18)

685 BUS 641.9951 685 Not satisfied 685 Not satisfied
494 BUS 492.6666 494 Not satisfied 494 Not satisfied
662 BUS 651.4537 662 Not satisfied 662 Not satisfied
A (n = 40) 9.9776 18.6309 Not satisfied 20.0182 Not satisfied
A (n = 60) 15.0148 27.9464 Not satisfied 30.0273 Not satisfied
A (n = 70) 17.5294 32.6041 Not satisfied 35.0318 Not satisfied
B (n = 100) 26.2213 42.8571 Not satisfied 42.8571 Not satisfied
B (n = 300) 79.8163 128.5714 Not satisfied 128.5714 Not satisfied
B (n = 500) 131.2759 214.2857 Not satisfied 214.2857 Not satisfied

Table 3. Behavior of the convergence of MC method with MAO
transition probability matrix related to the convergence condition
(3.1) and proximity of the upper bounds (3.2) and (3.3) to ρ(T ∗

MAO)
for the matrix DWB 512.

Matrix ||T || ρ(T) ρ(T ∗
MAO) (3.6) (3.7) (3.10) (3.11)

DWB 512 (MAO) 0.2475 0.0857 0.0173 0.0212 Satisfied 0.3571 Satisfied

Table 4. Behavior of the convergence of MC method with UM tran-
sition probability matrix related to the convergence condition (3.1)
and proximity of the upper bounds (3.2) and (3.3) to ρ(T ∗

UM) for the
matrix DWB 512.

Matrix ρ(T ∗
UM) Upper bound (3.15) (3.16) Upper bound (3.19) (3.20)

DWB 512 (UM) 0.8498 7.2808 Not satisfied 7.3180 Not satisfied

Example 5.2. We consider Initial Value Problem (IVP) of system of linear ODEs
with non constant coefficient matrix in the form{

y′(t) +A(t)y(t) = f(t),
y(t0) = 0, t ∈ [t0, T],

(5.1)

where A(t) = tridiag(−0.2t, 0.5t,−0.3t) of order n and [t0, T] = [0, 1]. The function
f(t) is computed such that the exact solution is given by

y(t) =

(
t2

25
,
t3

125
,
t4

625
,

t5

3125
, . . . ,

t2

25
,
t3

125
,
t4

625
,

t5

3125

)T

∈ Rn.

From analysis of eigenvalues of tridiagonal matrices, we can derive that all of
eigenvalues of matrix A(t) are nonzero over (0, 1] and then A(t) is nonsingular on this
interval [18]. For the stepsize h = 0.1 and the equally spaced grid {t0, t1, . . . , t10} for
t ∈ [0, 1], we apply the following forward Euler method

y′(t) ≈ y(tn+1)− y(tn)

h
, n = 0, 1, . . . , 9,

172 B. FATHI-VAJARGAH AND Z. HASSANZADEH

to approximate y′(t) and discretize the IVP (5.1). Therefore, IVP (5.1) can be written
in the following discretized form{

(I + 0.1An+1)yn+1 = yn + 0.1f(tn+1),
y0 = 0, n = 0, 1, . . . , 9,

(5.2)

where yn is approximation for y(tn) and for brevity of notation A(tn) is denoted by
An. Also, I is the identity matrix of order n. By setting B(t) = (I+0.1A(t)), we have
B(t) = tridiag(−0.02t, 1 + 0.05t,−0.03t). It is visible that bij(t) ≤ 0 for i ̸= j and
bii(t) > 0 on [0, 1]. Moreover, B(t) is Strictly Diagonally Dominant (SDD) matrix
on [0, 1]. Hence, it can be derived that B(t) is M-matrix on [0, 1] [3]. Now, we solve
the SLAE Bn+1yn+1 = yn + 0.1f(tn+1) for n = 0, 1, . . . , 9 by the MC method and
approximate the value of solution vector function y(t) in the grid points of interval
[0, 1]. We know that considering the splitting B(t) = D(t) − (D(t) − B(t)) and
iteration matrix T (t) = I − D(t)−1B(t) lead to ρ(T (t)) < 1 for t ∈ [0, 1] [24]. This
splitting is considered to start the Algorithm 1 and 2. It is evident that the first four
components of the solution vector are repeated periodically. Therefore, we can apply
the MC method to find the first four components which is the superiority of the MC
method to the deterministic iterative methods. We apply the Algorithm 1 and 2 to
solve SLAE (5.2) and numerically approximate the value of solution vector function
y(t) in the grid point tn+1, n = 0, 1, . . . , 9 for IVP (5.1). The numerical results of
these algorithms is presented in Table 5, 6, 7, 8 and 9 for n = 60, 80, 800, 1200 and
2000, respectively. We compare the obtained numerical results of these algorithms.
In these tables fifth column (MC solution) represents the first four components of
solution vector function in the corresponding pint tn+1. As we observe in Algorithm
2 the value of N is separate for each of the components while N is fix for all of
the components (Eq. (2.8)). Moreover, N in Algorithm 2 is significantly less than
Algorithm 1, which causes Algorithm 2 is implemented in so less time than Algorithm
1 (sixth column of the tables). We observe similar behavior of numerical results in
Tables 6 and 7 for n = 80 and n = 800. In continuation of this example we high the
order of IVP (5.1) and demonstrate the numerical results for n = 1200 and n = 2000
in Tables 8 and 9, respectively. In the Tables 8 and 9, we see that Algorithm 2 is
implemented by so few N in a very good time, while Algorithm 1 is the working
state for a long time because of the so many numbers of N . In these tables, the
mark “−” indicates that Algorithm 1 is in the working state more than an hour. It
is notable that the absolute error of every component for the obtained MC solution
from Algorithm 1 and 2 are so close together, which verify the efficiency of Algorithm
2. The absolute error for the third and fourth component of y(t) on [0, 1] with n = 80
and n = 800 are illustrated in Figure 1 and 2, respectively.

6. Conclusion

In this study, after reviewing the MC method for solving SLAE, we have investi-
gated the convergence of this method. We have provided simpler computing condition
on the convergence of this method related to the type of transition probability ma-
trix. Moreover, we have introduced Algorithm 2 based on the obtained convergence

CMDE Vol. 9, No. 1, 2021, pp. 159-179 173

Figure 1. The absolute error for the third component of y(t) on
[0, 1] for Algorithm 1 and 2 when ϵ = 10−6, δ = 10−4 and n = 80.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

−3 The 3th component of absolute error vector

t

E
rr

or

Algorithm 1
Algorithm 2

Figure 2. The absolute error for the fourth component of y(t) on
[0, 1] for Algorithm 1 and 2 when ϵ = δ = 10−4 and n = 800.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3 The 4th component of absolute error vector

t

E
rr

or

Algorithm 1
Algorithm 2

174 B. FATHI-VAJARGAH AND Z. HASSANZADEH

Table 5. Comparison between the obtained results of Algorithm 1
and 2 for IVP (5.1) of order n = 60.

Algorithm ϵ δ t (grid point) MC solution time (s) N
0.03350311 2

2 10−4 10−3 0.1 0.00222721 0.0094 2
0.00011323 2
0.00000681 6
0.27726833

1 10−4 10−3 0.1 0.08101776 0.0108 516
0.02126389
0.00635916
0.06734229 2

2 10−4 10−4 0.2 0.00599827 0.0100 2
0.00049448 2
0.00030667 2
0.06733833

1 10−4 10−4 0.2 0.00560034 2.4313 210267
0.00048545
0.00004144
0.13601618 2

2 10−4 10−4 0.4 0.02081601 0.0111 2
0.00280037 3
−0.00114027 2
0.13601309

1 10−4 10−4 0.4 0.01924847 10.4465 872823
0.00283503
0.00042525
0.20597949 2

2 10−4 10−3 0.6 0.04001173 0.0111 2
0.00900468 2
0.00227076 3
0.20601978

1 10−4 10−3 0.6 0.04229742 0.2438 20342
0.00888842
0.00186674
0.27726833 2

2 10−4 10−3 0.8 0.08101776 0.0108 2
0.02126389 3
0.00635916 6
0.27735807

1 10−4 10−3 0.8 0.07511885 0.4567 37387
0.02059928
0.00569094
0.31355990 2

2 10−4 10−3 0.9 0.09433112 0.0112 6
0.02767167 2
0.00688560 7
0.31352804

1 10−4 10−3 0.9 0.09518734 0.5749 48080
0.02920410
0.00902913

CMDE Vol. 9, No. 1, 2021, pp. 159-179 175

Table 6. Comparison between the obtained results of Algorithm 1
and 2 for IVP (5.1) of order n = 80.

Algorithm ϵ δ t (grid point) MC solution time (s) N
0.03350361 2

2 10−6 10−4 0.1 0.00224464 0.0151 2
0.00011421 2
0.00007157 2
0.03350331

1 10−6 10−4 0.1 0.00222849 0.6059 51565
0.00011353
0.00000520
0.10151775 2

2 10−4 10−4 0.3 0.01067183 0.0116 2
0.00133478 2
0.00045360 5
0.10150986

1 10−4 10−4 0.3 0.01126300 5.6938 482065
0.00131845
0.00015497
0.17085569 2

2 10−6 10−4 0.5 0.02989870 0.0119 21
0.00519219 4
0.00087528 19
0.17084967

1 10−6 10−4 0.5 0.02959232 16.9039 1388300
0.00527774
0.00095653
0.27742057 3

2 10−4 10−4 0.8 0.07541257 0.0123 44
0.01955931 3
−0.00025879 2
0.27735808

1 10−4 10−4 0.8 0.07508549 44.2700 3738700
0.02059906
0.00569903
0.35000512 3

2 10−6 10−4 1 0.12667018 0.0141 2
0.04340228 2
0.01190943 71
0.35003260

1 10−6 10−4 1 0.11780899 75.4980 6028569
0.04000500
0.01367688

176 B. FATHI-VAJARGAH AND Z. HASSANZADEH

Table 7. Comparison between the obtained results of Algorithm 1
and 2 for IVP (5.1) of order n = 800.

Algorithm ϵ δ t (grid point) MC solution time (s) N
0.03350361 2

2 10−5 10−4 0.1 0.00216154 0.2580 2
0.00011421 2
0.00007155 2
0.03350331

1 10−5 10−4 0.1 0.00222788 0.6263 51565
0.00011349
0.00000558
0.06733836 2

2 10−4 10−5 0.2 0.00533641 0.1766 2
0.00046957 2
0.00011735 21
0.06733833

1 10−4 10−5 0.2 0.00560091 5.0321 21026661
0.00048552
0.00004131
0.17088515 2

2 10−4 10−4 0.5 0.02854907 0.2091 7
0.00516771 4
0.00123089 15
0.17084958

1 10−4 10−4 0.5 0.02959330 35.2195 1388300
0.00527709
0.00095824
0.27726836 2

2 10−5 10−3 0.8 0.07357737 0.2161 4
0.01949347 2
0.00307904 6
0.27735950

1 10−5 10−3 0.8 0.07511707 0.9455 37387
0.02060666
0.00567846
0.35007300 2

2 10−3 10−3 1 0.11676348 0.1831 6
0.04099375 3
0.01654690 5
0.35003061

1 10−3 10−3 1 0.11779823 1.4823 60286
0.04000278
0.01367438

CMDE Vol. 9, No. 1, 2021, pp. 159-179 177

Table 8. Comparison between the obtained results of Algorithm 1
and 2 for IVP (5.1) of order n = 1200.

Algorithm ϵ δ t (grid point) MC solution time (s) N Absolute error
0.03350336 2 0.00017003

2 10−4 10−6 0.1 0.00223339 0.3222 74 0.00112228
0.00011223 4 0.00007519
0.00007154 2 0.00007031

1 10−4 10−6 0.1 −
0.13600088 2 0.00266755

2 10−4 10−4 0.4 0.01932400 0.5603 14 0.00154622
0.00270790 2 0.00033753
−0.00114399 2 0.00146004

1 10−4 10−4 0.4 −
0.20607982 2 0.00607982

2 10−6 10−3 0.6 0.04003182 0.4973 2 0.00003182
0.00831568 2 0.00031568
0.00418750 2 0.00258750

1 10−6 10−3 0.6 −
0.24153779 2 0.00820445

2 10−3 10−3 0.7 0.05745789 0.4916 5 0.00301345
0.01422344 2 0.00151973
0.00187393 5 0.00109026

1 10−3 10−3 0.7 −
0.31340114 2 0.01340114

2 10−7 10−3 0.9 0.09030620 0.4982 2 0.00030620
0.02886121 3 0.00186121
0.00575247 6 0.00234752

1 10−7 10−3 0.9 −
0.35000311 3 0.01666978

2 10−5 10−4 1 0.11180743 0.5100 2 0.00069632
0.03868447 6 0.00164743
0.01275208 69 0.00040640

1 10−5 10−4 1 −

results and finally compared this new MC method with Algorithm 1 in the numerical
examples.

Acknowledgment

The authors would like to thank the reviewer(s) and the corresponding editor, Prof.
Mehrdad Lakestani, for their valuable comments and suggestions in the significant
improvement of the manuscript.

178 B. FATHI-VAJARGAH AND Z. HASSANZADEH

Table 9. Comparison between the obtained results of Algorithm 1
and 2 for IVP (5.1) of order n = 2000.

Algorithm ϵ δ t (grid point) MC solution time (s) N Absolute error
0.03350336 2 0.00017003

2 10−4 10−6 0.1 0.00220751 1.5329 47 0.00109640
0.00011342 5 0.00007638
0.00000100 73 0.00000022

1 10−4 10−6 0.1 −
0.06734229 2 0.00016756

2 10−4 10−6 0.2 0.00533613 1.5543 2 0.00068916
0.00046957 2 0.00051732
−0.00035538 2 0.00013751

1 10−4 10−6 0.2 −
0.17085555 2 0.00418888

2 10−4 10−4 0.5 0.03201514 1.5826 2 0.00423737
0.00503701 2 0.00040738
0.00257172 2 0.00180011

1 10−4 10−4 0.5 −
0.20602980 2 0.00602980

2 10−4 10−4 0.6 0.04184271 1.6145 19 0.00184271
0.00952614 2 0.00152614
0.00420511 2 0.00260511

1 10−4 10−4 0.6 −
0.24161663 2 0.00828329

2 10−6 10−4 0.7 0.05756886 1.9740 34 0.00312441
0.01499098 3 0.00228728
0.00648553 2 0.00352133

1 10−6 10−4 0.7 −
0.35000261 2 0.01666928

2 10−6 10−4 1 0.11756381 2.0127 60 0.00645270
0.04018043 25 0.00314339
0.01367802 60 0.00133234

1 10−6 10−4 1 −

References

[1] V. Alexandrov, E. Atanassov, I. Dimov, S. Branford, A. Thandavan, and C. Weihrauch, Parallel

Hybrid Monte Carlo Algorithms for Matrix Computations, Lecture Notes in Computer Science.
Proceedings Part III. 3516: 744-752. 5th International Conference. Atlanta. GA. USA. (2005),
22–25.

[2] V. Alexandrov and O. A. Esquivel-Flores, Towards Monte Carlo preconditioning approach and
hybrid Monte Carlo algorithms for matrix computations, Comput. Math. Appl, 70 (2015), 2709–
2718.

[3] O. Axelsson, Iterative solution methods, Cambridge University Press, Cambridge, 1996.

[4] M. Benzi and D. Bertaccini, Block preconditioning of real-valued iterative algorithms for complex
linear systems, IMA J. Numer. Anal, 28 (2008), 598–618.

CMDE Vol. 9, No. 1, 2021, pp. 159-179 179

[5] S. Branford, C. Sahin, A. Thandavan, C. Weihrauch, V. Alexandrov and I. T. Dimov, Monte
Carlo methods for matrix computations on the grid, Future Gener. Comput. Syst, 24 (2008),
605–612.

[6] G. Cheng, New bounds for eigenvalues of the Hadamard product and the Fan product of matri-
ces, Taiwanese Journal of Mathematics, 18 (2014), 305–312.

[7] G. Cheng and X. Rao, Some inequalities for the spectral radius of the Hadamard product of two
nonnegative matrices, J. Math. Inequal, 7 (2013), 529–534.

[8] D. Davila, V. Alexandrov, and O. A. Esquivel-Flores, On Monte Carlo hybrid methods for linear
algebra, 7th Workshop on latest advances in scalable algorithms for large-scale systems, Spain,
2016.

[9] I. Dimov, S. Maire, and J. M. Sellier, A new walk on equations Monte Carlo method for solving

systems of linear algebraic equations, Appl. Math. Model., 39 (2015), 4494–4510.
[10] M. Fang, Bounds on eigenvalues of the Hadamard product and the Fan product of matrices,

Linear Algebra Appl., 425 (2007), 7-15.

[11] B. Fathi-Vajargah, Different stochastic algorithms to obtain matrix inversion, Appl. Math.
Comput., 189 (2007), 1841-1846.

[12] B. Fathi-Vajargah, New advantages to obtain accurate matrix inversion, Appl. Math. Comput.,
189 (2007), 1798-1804.

[13] B. Fathi-Vajargah and Z. Hassanzadeh, Improvements on the hybrid Monte Carlo algorithms
for matrix computations, Sādhanā, 44 (2018), 1–13.

[14] B. Fathi-Vajargah and Z. Hassanzadeh, Monte Carlo method for the real and complex fuzzy
system of linear algebraic equations, Soft Comput., Online first published, 19 April 2019,

Doi:10.1007/s00500-019-03960-1.
[15] C. M. Grinstead and J. L. Snell, Introduction to probability, Second edition, American Mathe-

matical Society, 2003.
[16] Q. P. Guo, H. B. Li, and J. S. Leng, Some new bounds for the Hadamard product and the Fan

product of matrices, Numer. Algorithms, 18 (2014), 1–15.
[17] Q. P. Guo, H. B. Li, and M. Y. Song, New inequalities on eigenvalues of the Hadamard product

and the Fan product of matrices, J. Inequal. Appl., 2013 (2013), 421–433.

[18] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge U.P.l., 1985.
[19] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New

York, 1991.
[20] R. A. Horn and F. Zhang, Bounds on the spectral radius of a Hadamard product of nonnegative

or positive semidefinite matrices, Electron. J. Linear Algebra, 20 (2010), 90–94.
[21] H. Ji, M. Mascagni and Y. Li, Convergence analysis of Markov chain Monte Carlo linear solvers

using Ulam-Von Neumann algorithm, SIAM J. Numer. Anal., 51 (2013), 2107–2122.
[22] Q. Liu and G. Chen, On two inequalities for the Hadamard product and the Fan product of

matrices, Linear Algebra Appl., 431 (2009), 974–984.
[23] R. Y. Rubinstein, Simulation and the Monte Carlo method, John Wiley and Sons, New York,

1981.
[24] Y. Saad, Iterative methods for sparse linear systems, SIAMY, Philadelphia, 2003.

[25] I. M. Sobol, The Monte Carlo method, The University of Chicago press, Chicago, 1975.
[26] J. Strassburga and V. Alexandrovb, A Monte Carlo approach to sparse approximate inverse

matrix computations, Proc. Comput. Sci., 18 (2013), 2307–2316.
[27] Website: http://math.nist.gov/MatrixMarket/matrices.html

	1. Introduction
	2. Background of the MC method for solving SLAE
	3. Analysis of convergence
	4. A new MC method for solving SLAE
	5. Numerical examples
	6. Conclusion
	Acknowledgment
	References

