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Abstract In this paper, the nonlinear system of initial value problems are solved numerically

by using Residual method which is based on the minimizing residual function by
the Taylor’s series expansion. The convergence analysis of the method is given. The

significant feature of the method is reduction of nonlinear system of initial value

problems to the system of linear equations. To emphasize the accuracy and poten-
tial of the method, we solve Lorenz system and primary HIV-1 infection problem

numerically.
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1. Introduction

In this research, we propose Residual method to approximate nonlinear system of
initial value problems in the form

Y′(x) = F(x,Y(x)), Y(a) = Y0, (1.1)

where Y : [a, b] → D ⊂ Rm, F ∈ Cn[a, b] × C(D), F(k)(x,Y) denotes the kth

derivative of F with respect to x, F(k)(x,Y) is Lipschitz with Lipschitz constant Lk

with respect to Y on [a, b]×D for k = 0, 1, . . . , n− 1 and Y0 ∈ D.
Investigation of the exact and numerical solutions of nonlinear system of initial

value problems have been focused by some researchers for many years. Most famous
type of them are dynamical systems and chaotic problems.

For an example of dynamical systems, we investigate primary HIV-1 infection prob-
lem which is a basic mathematical model widely used to describe the virus dynamics
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of primary HIV-1 infection and described by a system of differential equations given
in [3]

dT

dt
= s− d T − β V T, T (t0) = T0, (1.2)

dI

dt
= β V T − δI, I(t0) = I0, (1.3)

dV

dt
= p I − c V, V (t0) = V0, (1.4)

where T is the concentration of target cells, s represents the constant influx rate of
target cells, d is the target cell loss rate, β is the target cells infection rate constant, I
is the concentration of infected cells, δ is their loss rate constant, V is the serum viral
concentration, p is the viral production rate constant and c is the virus concentrate
rate constant. Eq. (1.2) expresses the dynamics of the target cells, Eq. (1.3) describes
the dynamics of the infected cells and Eq. (1.4) expresses the viral dynamics. For
this model, it is concluded that the control of HIV-1 in the periphery is limited by
the availability of susceptible target cells.

For an example of chaotic problems, we consider Lorenz system given in [7]

dx1

dt
= a(x2 − x1), x1(t0) = x10,

dx2

dt
= −x1x3 + bx1 − x2, x2(t0) = x20,

dx3

dt
= x1x2 − cx3, x3(t0) = x30,

(1.5)

where a, b, c are all greater than zero. These equations were derived by Lorenz in
the modelling of two dimensional fluid cell between two paralel plates at different
temperatures. Some examples of the numerical treatment of Lorenz system are given
in [1, 4, 7, 8, 9].

In order to solve these nonlinear system of initial value problems numerically, we
use Residual method given in [2] which is based on the minimization of a residual
function using the Taylor’s series expansion. In this method, interval [a, b] is divided
into N subintervals and approximate solution is constructed as a linear combination
of Bernstein polynomials on each subinterval. Then unknown coefficients of Bernstein
polynomials are obtained using Residual method. When the other methods are used
to solve nonlinear system of initial value problems numerically, either the system of
nonlinear equations or the system of linear equations containing too many unknowns
is encountered. In the first case, a numerical method such as Newton’s method is used
to approximate the system of nonlinear equations. In order to solve system of linear
equations, Gauss elimination, LU factorization or the methods given in [5, 6, 10] are
used in the second case. Whereas the Residual method reduces the nonlinear system
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of initial value problems to lower triangular system with non-zero diagonals. Thus,
there is no need to use another method to solve the system, the system can be solved
directly. This is the most significant advantage of the proposed method.

In section 2, Residual method is described for nonlinear system of initial value
problems. Convergence of the method is analysed in section 3. In section 4, numerical
solutions of primary HIV-1 infection problem and Lorenz system are given. In the
Conclusion section, summary of the study and our suggestions regarding future works
are presented.

2. Residual method for nonlinear system of initial value problems

The interval [a, b] is divided into N equally spaced subintervals [ai−1, ai], where
ai = a+ ih, i = 0, ..., N, h = (b− a)/N and N is a positive integer. The initial value
problem (1.1) is written piecewisely as follows

Y′i(x) = F(x,Yi(x)), x ∈ Si, (2.1)

where Si = [ai−1, ai] for i = 1, ..., N and

Y1(a0) = Y0, Yi(ai−1) = Yi−1(ai−1) for i = 2, .., N. (2.2)

In order to approximate the solution Yi(x), we use nth degree Bézier curve on Si

Ui(x) =

n∑
j=0

Ci
jB

n
j

(
x− ai−1

h

)
, (2.3)

where

Bn
j

(
x− ai−1

h

)
=

(
n

j

)
1

hn
(x− ai−1)j(ai − x)n−j

are the Bernstein polynomials over the interval [ai−1, ai] and Ci
j are unknown control

vectors. We must determine (n+ 1) unknown control vectors to obtain the approxi-
mate solution Ui(x) over each subinterval Si.

Applying the initial conditions (2.2) to the approximate solution, we have the
following conditions

U1(a0) = Y0, Ui(ai−1) = Ui−1(ai−1), i = 2, . . . , N. (2.4)

Thus, we guarantee the continuity of the approximate solution, i.e U(x) ∈ C[a, b].
Using end point interpolation property of Bézier curves and (2.4), we get

C1
0 = Y0,

Ci
0 = Ci−1

n .
(2.5)

Thus, we reduce the number of the unknown control vectors from n+ 1 to n for each
subinterval. Substitution of (2.3) into the differential equation (2.1) gives

R(x) = Ri(x), x ∈ Si, i = 1, 2, . . . , N,

where

Ri(x) = U′i(x)− F(x,Ui(x)), x ∈ Si. (2.6)
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Our aim is to determine unknown control vectors by minimizing the residual function.
For this minimization, we equate the first n terms in Taylor’s expansion of Ri(x) at
x = ai−1 to zero, that is

Ri(ai−1) = 0,
R′i(ai−1) = 0,
R′′i (ai−1) = 0,

...

R
(n−1)
i (ai−1) = 0,

(2.7)

where R
(k)
i denotes the kth derivative of R with respect to x on [a, b].

From (2.7), we get

0 = R
(k)
i (ai−1)

= U
(k+1)
i (ai−1)− F(k)(ai−1,Ui(ai−1)), k = 0, . . . , n− 1,

which yields the following linear equations

n(n− 1) . . . (n− k)

hk+1
∆k+1Ci

0 − F(k)(ai−1,C
i
0) = 0, i = 1, . . . , N. (2.8)

When equations (2.8) are written as matrix system, the system encountered is a
system consisting of lower triangular matrix. The solution of this system will yield
unknown control vectors Ci

k, k = 1, . . . , n. As a result, the approximate solutions
Ui(x) in each subinterval Si are obtained by minimizing Ri(x), for i = 1, ..., N .

3. Convergence of the method for nonlinear system of initial value
problems

In the proofs of the following lemmas and theorem, the similar techniques which
are used in the proofs of the lemmas and theorem given in [2] are used.

Lemma 3.1. The residual functions Ri(x) are order of n for i = 1, ..., N.

Proof. The Taylor’s expansion of Ri(x) at x = ai−1 is

Ri(x) = Ri(ai−1) + (x− ai−1)R′i(ai−1) +
(x− ai−1)2

2!
R′′i (ai−1) + . . .

+
(x− ai−1)n−1

(n− 1)!
R

(n−1)
i (ai−1) +

(x− ai−1)n

n!
R

(n)
i (ξi)

where ξi is between (ai−1, x) and x ∈ [ai−1, ai]. Using equations (2.7), we get∥∥Ri(x)
∥∥ =

∣∣∣∣ (x− ai−1)n

n!

∣∣∣∣ ∥∥R(n)
i (ξi)

∥∥
≤ C̃hn,

where C̃ =
1

n!
max

x∈[ai−1,ai]

∥∥R(n)
i (x)

∥∥. Therefore,∥∥R(x)
∥∥ = O(hn).

�
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Lemma 3.2. Let Ũi(x) be the auxiliary approximate solution of piecewise initial
value problem (2.1) with initial conditions (2.2), then

Y
(k)
i (ai−1) = Ũ

(k)

i (ai−1), for k=0,...,n (3.1)

and ∥∥Yi(x)− Ũi(x)
∥∥ ≤ Khn+1, ∀x ∈ Si, (3.2)

where Yi(x) is the corresponding exact solution and

K =
1

(n+ 1)!
max
x∈[a,b]

∥∥Y(n+1)
i (x)

∥∥.
Proof. The auxilary approximate solution U(x) must satisfy the initial conditions
(2.2) of (2.1), i.e.,

Ũ1(a0) = Y0 and Ũi(ai−1) = Yi−1(ai−1). (3.3)

Let the residual function for Ũi(x)

R̃i(x) = Ũ
′
i(x)− F(x, Ũi(x)), x ∈ Si (3.4)

be 0 at the point x = ai−1 for the auxiliary approximate solution as in (2.7), that is

R̃
(k)

i (ai−1) = 0, (3.5)

for k = 0, . . . , n− 1 and i = 1, . . . , N . Then,

0 = R̃
(k)

i (ai−1)

= Ũ
(k+1)

i (ai−1)− F(k)(ai−1, Ũi(ai−1))

= Ũ
(k+1)

i (ai−1)− F(k)(ai−1,Yi(ai−1))

= Ũ
(k+1)

i (ai−1)−Y
(k+1)
i (ai−1).

It gives (3.1).

From the Taylor’s expansion of Yi(x)− Ũi(x) at x = ai−1, we get

Yi(x)− Ũi(x) =
(
Yi(ai−1)− Ũi(ai−1)

)
+ (x− ai−1)

(
Y′i(ai−1)− Ũ

′
i(ai−1)

)
+

(x− ai−1)2

2!

(
Y′′i (ai−1)− Ũ

′′
i (ai−1)

)
+ · · ·+ (x− ai−1)n

n!

×
(
Y

(n)
i (ai−1)− Ũ

(n)

i (ai−1)
)

+
(x− ai−1)n+1

(n+ 1)!
Y

(n+1)
i (ξi−1)

and using (3.1), we obtain∥∥Yi(x)− Ũi(x)
∥∥ =

∣∣∣∣ (x− ai−1)n+1

(n+ 1)!

∣∣∣∣ ∥∥Y(n+1)
i (ξi−1)

∥∥
≤ Khn+1,
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where K =
1

(n+ 1)!
max
x∈[a,b]

∥∥Y(n+1)
i (x)

∥∥ and ξi−1 ∈ (ai−1, x). �

Lemma 3.3. Let Ũi(x) be the auxiliary approximate solution of piecewise initial value
problem (2.1) with initial conditions (2.2) and Ui(x) be the approximate solution of
(2.1) with initial conditions (2.4), then

∥∥Ui(x)− Ũi(x)
∥∥ ≤ (1 + K̃

(
h+

h2

2!
+ · · ·+ hn

n!

))∥∥Ui(ai−1)− Ũi(ai−1)
∥∥,

(3.6)

where K̃ = max
k=0...,n−1

Lk, Lk are Lipschitz constants of F(k)(x,Y) with respect to Y

on [a, b]×D, for k = 0, 1, . . . , n− 1.

Proof. We write the Taylor’s expansion of the nth degree polynomial
Ũi(x)−Ui(x) about x = ai−1,

Ũi(x)−Ui(x) =
(
Ũi(ai−1)−Ui(ai−1)

)
+ (x− ai−1)

(
Ũ
′
i(ai−1)−U′i(ai−1)

)
+

(x− ai−1)2

2!

(
Ũ
′′
i (x)−U′′i (x)

)
+ . . .

+
(x− ai−1)n

n!

(
Ũ

(n)

i (x)−U
(n)
i (x)

)
.

Using (2.6), (2.7), (3.4) and (3.5), we obtain

Ũi(x)−Ui(x) =
(
Ũi(ai−1)−Ui(ai−1)

)
+ (x− ai−1)

×
(
F(ai−1, Ũi(ai−1))− F

(
ai−1,Ui(ai−1)

))
+

(x− ai−1)2

2!

(
F(1)(ai−1, Ũi(ai−1))− F(1)(ai−1,Ui(ai−1))

)
+ . . .

+
(x− ai−1)n

n!

(
F(n−1)(ai−1, Ũi(ai−1))− F(n−1)(ai−1,Ui(ai−1))

)
Taking maximum norm of both sides and using Lipschitz property, we have∥∥Ũi(x)−Ui(x)

∥∥ ≤
∥∥Ũi(ai−1)−Ui(ai−1)

∥∥+ hL0

∥∥Ũi(ai−1)−Ui(ai−1)
∥∥

+
h

2!
L1

∥∥Ũi(ai−1)−Ui(ai−1)
∥∥+ . . .

+
hn

n!
Ln−1

∥∥Ũi(ai−1)−Ui(ai−1)
∥∥

≤
(

1 + K̃
(
h+ h2

2 + · · ·+ hn

n!

))∥∥Ũi(ai−1)−Ui(ai−1)
∥∥
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where K̃ = max
k=0...,n−1

Lk, Lk are Lipschitz constants of F(k)(x,Y) with respect to Y

on [a, b]×D, for k = 0, 1, . . . , n− 1. �

Theorem 3.4. Let Y(x) be the exact solution of

Y′ = F(x,Y(x)), Y(x0) = Y0, (3.7)

where Y : [a, b]→ D ⊂ Rm, F ∈ Cn[a, b]×C(D), F(k)(x,Y) denotes the kth derivative

of F with respect to x, F(k)(x,Y) is Lipschitz with Lipschitz constant Lk with respect
to Y on [a, b] × D, for k = 0, 1, . . . , n − 1, Y0 ∈ D and U(x) be the nth degree
approximate function of (3.7) as defined in (2.3), then∥∥Y(x)−U(x)

∥∥ ≤Mhn, x ∈ [a, b],

where M is a constant which is independent on h.

Proof. We will prove this theorem using mathematical induction. Let Ũi(x) be the
corresponding auxilary approximate solution for x ∈ Si, then∥∥Yi(x)−Ui(x)

∥∥ ≤ ∥∥Yi(x)− Ũi(x)
∥∥+

∥∥Ũi(x)−Ui(x)
∥∥, for i = 1, . . . , N.

Using (3.2) and (3.6), we obtain

∥∥Yi(x)−Ui(x)
∥∥ ≤ Khn+1 +

(
1 + C

(
h+

h2

2
+ · · ·+ hn

n!

))
×
∥∥Ũi(ai−1)−Ui(ai−1)

∥∥. (3.8)

Since for the first interval Ũ1(x) = U1(x), we get∥∥Y1(x)−U1(x)
∥∥ ≤ Khn+1, ∀x ∈ S1,

where K =
1

(n+ 1)!
max
x∈[a,b]

∥∥Y(n+1)
i (x)

∥∥.
Then using initial conditions (2.4) and (3.3), we have∥∥Y2(x)−U2(x)

∥∥ ≤ Khn+1 +

(
1 + C

(
h+

h2

2
+ · · ·+ hn

n!

))
×
∥∥Ũ2(a1)−U2(a1)

∥∥
≤ Khn+1 +

(
1 + C

(
h+

h2

2
+ · · ·+ hn

n!

))
×
∥∥Y1(a1)−U1(a1)

∥∥
≤ 2Khn+1 +O(hn+2).

Suppose that inequality is true for N − 1, that is,∥∥YN−1(x)−UN−1(x)
∥∥ ≤ (N − 1)Khn+1 +O(hn+2).
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From (2.4), (3.3) and (3.8), we have∥∥YN (x)−UN (x)
∥∥ ≤ (N − 1)Khn+1 +

(
1 + C

(
h+ h2

2 + · · ·+ hn

n!

))
×
∥∥ŨN (aN−1)−UN (aN−1)

∥∥
≤ Khn+1 +

(
1 + C

(
h+ h2

2 + · · ·+ hn

n!

))
×
∥∥YN−1(aN−1)−UN−1(aN−1)

∥∥
≤ Khn+1 +

(
1 + C

(
h+ h2

2 + · · ·+ hn

n!

))
× (N − 1)Khn+1 +O(hn+2)

≤ NKhn+1 +O(hn+2).

Since N = (b− a)/h, we obtain∥∥Y(x)−U(x)
∥∥ ≤Mhn

, where M is a constant which is independent on h. �

4. Numerical results and discussion

We solve the following three examples numerically to illustrate the applicability of
the proposed method.

Example 4.1. Consider the system

dx

dt
= x+ 2y − z,

dy

dt
= x+ z,

dz

dt
= 4x− 4y + 5z,

with the initial conditions

x(0) = −1, y(0) = 0, z(0) = 0.

The exact solution of the given system is

x(t) = −2e2t + e3t,

y(t) = e2t − e3t,

z(t) = 4e2t − 4e3t.
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We apply Residual method to above system of initial value problems to confirm the
error analysis of the method. In Table 1, we give the obtained error values for h = 0.1
and n = 4. ex, ey and ez denotes the errors of x, y and z, respectively.

Table 1. Error values of Example 4.1 for h = 0.1 and n = 4.

t ex ey ez
0.000 0 0 0
0.100 4.90964(-09) -5.68949(-09) -2.27579(-08)
0.200 1.33950(-08) -1.54966(-08) -6.19866(-08)
0.300 2.75375(-08) -3.14144(-08) -1.25658(-07)
0.400 4.73634(-08) -6.15767(-08) -2.46307(-07)
0.500 9.47288(-08) -1.36299(-07) -5.45196(-07)
0.600 1.47834(-07) -4.33625(-08) -1.7345(-07)
0.700 2.37894(-07) -2.70111(-07) -1.08044(-06)
0.800 4.0321(-07) -8.92306(-08) -3.56923(-07)
0.900 3.79802(-07) -1.87333(-06) -7.49334(-06)
1.000 1.25292(-06) -1.50373(-06) -6.01492(-06)

In Table 2, we give the observed orders, which are well confirmed with theoretical
results, obtained using the following formula

ord(h) =

log(
ex,h
ex,h/2

)

log 2
,

where ex,h is the maximum error moduli of the function x obtained using step-size h.

Table 2. Observed orders of Example 4.1.

N n = 2 n = 3 n = 4
Observed orders for x

10/20 1.67186 2.621231 3.56238
20/40 1.84842 2.83064 3.80865
40/80 1.93098 2.9302 3.95203

Observed orders for y
10/20 1.69408 2.63226 3.56882
20/40 1.8598 2.83634 3.81389
40/80 1.93674 2.93312 4.03471

Observed orders for z
10/20 1.75459 2.72627 3.69628
20/40 1.88481 2.88012 3.87734
40/80 1.94136 2.93665 4.04074
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Example 4.2. Consider the Lorenz system

dx

dt
= 10(y − x),

dy

dt
= −xz + 28x− y,

dz

dt
= xy − 8/3z,

with the initial conditions

x(0) = 1, y(0) = 5, z(0) = 10.

We solve Lorenz system using Residual method and compare our results with the
results obtained by piecewise successive linearization method (PSLM) given in [7].
Graphs of approximate solutions are given in Figure 4.2 and comparison of the results
are given in Table 3.

Figure 1. Graphs of the approximate solutions of Example 4.2 for
n = 4
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Table 3. Numerical results of the Lorenz system obtained using
PSLM [6] and RM.

t x(t) y(t) z(t)
RM REF.[6] RM REF.[6] RM REF.[6]

2 -1.44432 -1.444359 -1.07476 -1.074977 19.5172 19.517057
4 -14.6729 -14.675080 -20.1954 -20.189107 29.0463 29.063362
6 -2.88223 -2.883028 -4.76728 -4.763557 20.3578 20.355558
8 -2.69165 -2.679252 1.45007 1.429476 27.0352 27.105659
10 -11.847 -12.026645 -17.5237 -17.520281 23.8346 24.300154

Example 4.3. Consider the primary HIV-1 infection problem

dx

dt
= 102 − 10−2x− 1.3× 10−6x z,

dy

dt
= 1.3× 10−6x z − δy,

dz

dt
= 103y − 3z,

with the initial conditions

x(0) = 104, y(0) = 0, z(0) = 10−6.

In the following graphs logarithm of approximate solution of x, y, z with base 10 are
given in 250 days for different infected cell death rates δ = 0.1, δ = 0.2, δ = 0.3,
δ = 0.5, δ = 0.75 and δ = 1.0 .

It is seen from the graphs that the approximate solutions of Example 3 obtained
using the Residual method coincide with the solutions given in [3].

5. Conclusion

We use Residual method (RM) to approximate nonlinear system of initial value
problems. Residual method reduces the nonlinear system of initial value problems to
lower triangular system with non-zero diagonals. This is the significant advantage of
the Residual method. As a result, we obtain high order accurate solutions. Observed
orders obtained from numerical examples are in good agreement with the predicted
ones in the theorem. Proposed method is illustrated with two examples, Lorenz
system and primary HIV-1 infection problem. From numerical results, it might be
seen that given method is efficient and has great potential. This method can be
extended some special kind of nonlinear ordinary differential equations and partial
differential equations.
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Figure 2. Graphs of the approximate solutions of Example 4.3
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