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Abstract In this paper, a denoising PDE model based on a combination of the isotropic dif-
fusion and total variation models is presented. The new weighted model is able to

be adaptive in each region in accordance with the image’s information. The model

performs more diffusion in the flat regions of the image, and less diffusion in the
edges of the image. The new model has more ability to restore the image in terms of

peak signal to noise ratio and visual quality, compared with total variation, isotropic

diffusion, and some well-known models. Experimental results show that the model
is able to suppress the noise effectively while preserving texture features and edge

information well.
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1. Introduction

Image denoising is an important subject in computer vision and image processing
systems. The aim of all denoising methods is to effectively suppress noise while
keeping intact the features of the image. In order to recover a digital image that has
been contaminated by noise, a variety of methods have been proposed [34, 37, 38, 39].
Some linear filtering methods [26, 27] have been suggested to remove Gaussian and
uniform noise in images. Other commonly used linear filtering methods are Wiener
filter [20] and Mean filter [12, 32]. Nonlinear image filters [5, 6] have emerged to
improve the effectiveness of linear filters, where the median filter is the most used
nonlinear filtering [30]. Various wavelet-based techniques have also been proposed for
image denoising [8, 10, 24]. Image denoising techniques based on partial differential
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equation and Computational Fluid Dynamics (CFD) have been developed, such as
Total Variation (TV) methods [3, 7, 15, 25], level set methods [29], essentially non
oscillatory schemes [40], and nonlinear diffusion algorithms [2, 11, 13, 22].

Recently, Partial Differential Equation (PDE) approaches of image denoising have
become important. The main idea of PDE-based models is to deform an image with a
PDE and achieve the expected image as a solution to this equation. The famous form
of diffusion, known as the Gaussian filter, is homogeneous isotropic linear diffusion.
The Isotropic Diffusion (ID) performs well in the flat areas of the image. However, it
blurs edges in the images and moves their positions. To overcome these shortcomings,
nonlinear denoising models have been developed. Perona and Malik (PM) proposed
an influential nonlinear anisotropic diffusion (AD) scheme [23]. Numerous denoising
approaches derived from their model have been proposed since then [31]. An influen-
tial variational denoising technique was developed by Rudin, Osher and Fatemi. Their
denoising model, which is known as the TV model, is based on the minimization of
the TV norm. TV model is a successful approach to recover images with sharp edges.
Nevertheless, TV denoising will produce the block effect when dealing with the flat
areas.

Recently, some denoising methods by combining different PDE-based models have
been proposed [36]. An image denoising algorithm has been suggested by using sto-
chastic optimization algorithm for combining denoising methods based on partial
differential equations [21].

Isotropic diffusion and total variation models are remarkably effective at image
smoothing and edge-preserving, respectively. In order to eliminate the noise, and at
the same time maintain the edges and the other necessary features in the image, we
propose a weighted model based on the ID and TV models. In the proposed model
the gradient is used to determine whether the region is the edge or the flat area. The
model highlights the role of the ID model in the flat areas of an image, and the role
of TV model in the regions which contains more image features (such as edges, etc.).

The remainder of this paper is organized as follows. The isotropic diffusion and
total variation models are briefly described in Section 2. The proposed PDE model
and the discretization of the model are described in Section 3. The experimental
results that confirm the efficiency of the proposed model are presented in section 4.
Finally, this paper is concluded in the Section 5.

2. The isotropic diffusion and total variation models

2.1. The isotropic diffusion model. The famous and simplest form of diffusion,
known as the Gaussian filter, is the linear Isotropic Diffusion (ID) model [31]. In
general, the ID model can be defined as finding the minimum of the functional

E (u) =

∫∫
Ω

|∇u|2 + λ(u− u0)
2
dxdy, (2.1)

where Ω is an open bounded domain in R2 (the domain of the image), λ is the
Lagrange multiplier and u0(x, y) is the degraded image.
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The Euler-Lagrange equation gives

∇ · (∇u)− λ (u− u0) = 0. (2.2)

To prove (2.2), let

E (u) =

∫∫
Ω

F (x, y, u, ux, uy)dxdy, (2.3)

the extremizing function u(x, y) is determined from the solution of the following equa-
tion which is known as Euler-Lagrange equation [9]

∂

∂x
Fux +

∂

∂y
Fuy − Fu = 0. (2.4)

The partial derivatives of the integrand

F (x, y, u, ux, uy) = |∇u|2 + λ(u− u0)
2

= u2
x + u2

y + λ(u− u0)
2
, (2.5)

are

Fux
= 2ux, Fuy

= 2uy, Fu = 2λ (u− u0) . (2.6)

Therefore, the Euler-Lagrange equation of (2.1) gives

0 =
∂

∂x
(2ux) +

∂

∂y
(2uy)− 2λ (u− u0)

= 2

(
∂

∂x
,
∂

∂y

)
. (ux, uy)− 2λ (u− u0)

0 = ∇. (∇u)− λ (u− u0) . (2.7)

The ID model is defined as
∂u
∂t = ∇ · (∇u)− λ (u− u0) ,
∂u
∂n = 0 on ∂Ω× (0, T ) ,

u (x, y, t) |t=0 = u0 (x, y) in Ω,

(2.8)

where u (x, y, t) |t=0 = u0 (x, y) is the initial condition, u (x, y, t) is the restored version
of the initial degraded image u0 (x, y) , ∇ is gradient operator with respect to the
spatial variables x, y, and Ω is an open bounded domain in R2.

The diffusion coefficient of the model is one, thus, the diffusion is the same in all
directions. This model usually is used to smooth an image. Nevertheless, the ID
model will blur the edge of the image during removing the noise [36].

2.2. The total variation model. The best known variational denoising model is
the Total Variation (TV) model proposed by Rudin et al. [25] in 1992. The TV model
is a successful approach to recover images with sharp edges. Total variation denoising
is a process based on the principle that images with excessive possibly spurious detail
have high total variation, that is, the integral of the absolute gradient of the image is
high. Therefore, lessening the total variation of the image subject to it being as close
as possible to the original image, removes unwanted detail whilst preserving important
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features such as edges. The TV model can be defined as finding the minimum of the
functional

E (u) =

∫∫
Ω

(|∇u|+ λ

2
(u0 − u)

2
)dxdy, (2.9)

and the Euler-Lagrange equation gives

∇.
(
∇u
|∇u|

)
− λ (u− u0) = 0. (2.10)

This equation can be written as

∇ ·

 ∇u√
|∇u|2 + ε

− λ (u− u0) = 0, (2.11)

where ε > 0 is very small, chosen to avoid division by zero at places where |∇u| = 0.

For numerical implementations, the quantity |∇u| is replaced with

√
|∇u|2 + ε for

some small positive value of ε such as 10−11. The value of ε can be assigned to lowest
machine number to avoid divide by zero conditions during implementations.

The TV model can be written as
∂u
∂t = ∇ ·

(
∇u√
|∇u|2+ε

)
− λ (u− u0) ,

∂u
∂n = 0 on ∂Ω× (0, T ) ,

u (x, y, t) |t=0 = u0 (x, y) in Ω,

(2.12)

where u (x, y, t) |t=0 = u0 (x, y) is the initial condition and Ω is an open bounded
domain in R2.

The TV model has a capacity of handling edges and removing noise in a given
image [1]. The model is a successful approach to recover images with sharp edges.
Nevertheless the TV model produces a block effect when being applied for the flat
areas, thus the local details characteristics of the original image are lost [17, 18].

3. New model

The main problem of image denoising is how to remove noise without blurring
edges of the image. Considering the characteristics of the isotropic diffusion and total
variation models, we propose a weighted model based on the isotropic diffusion and
total variation models. According to what is mentioned above, the isotropic diffusion
model has good performance in the flat areas of the image, and the total variation
model has good performance in the edges. In the proposed model the gradient is used
to determine whether the region is the edge or the flat area. In order to suppress
noise while preserving important features of the image, we integrate the isotropic and
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total variation models to get a new PDE model as follows


∂u
∂t = w∇. (∇u) +(1− w)∇.

(
∇u√
|∇u|2+ε

)
− λ (u− u0) ,

∂u
∂n = 0 on ∂Ω× (0, T ) ,

u (x, y, t) |t=0 = u0 (x, y) in Ω,

(3.1)

where u (x, y, t) |t=0 = u0 (x, y) is the initial condition, Ω is an open bounded domain
in R2, and the weight function w is defined as follows

w =
1√

1 + |∇u|2
=

1√
1 + ux2 + uy2

, (0 < w < 1). (3.2)

The new model is able to be adaptive in each region depending on the information of
the image.

In the flat areas of image, which contain less image features (such as edges, etc.),
|∇u| (the magnitude of the gradient) will be small and based on (3.2), w will be
close to 1, while the value of 1− w will be close to 0. Therefore, the new model will
highlight the role of isotropic model.

In the regions which contain more image features, |∇u| will be large and based on
(3.2), w will be close to 0, while the value of 1−w will be close to 1. Thus, the model
will highlight the role of total variation model.

More precisely, by using the weight w and 1−w, the model performs more diffusion
in the flat areas and less diffusion in the edges of the image.

A PDE problem is said to be well-posed if a solution to the problem exists, the
solution is unique, and the solution depends continuously on the problem data. The
ID and TV models are well-posed. During the process of the image smoothing, the
image gradient ∇u keeps changing as the iterative evolution changes. For this reason,
the weight function w, which is used to determine whether the region is the edge or the
flat area, should not be set fixed, but keeps changing with the number of iterations.
The weight function is a continuous function, so at each time step, the value of weight
function is a finite number in [0, 1]. The finite convex combination of two well-posed
models, obviously, satisfies in the above three conditions of well-posed problem and
therefore the new model is well-posed.

To solve (3.1) with the finite difference method, we let

I = ∇ · (∇u) , (3.3)

T = ∇ ·

 ∇u√
|∇u|2 + ε

 . (3.4)
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Then,

I = ∇ · (∇u) =

(
∂

∂x
,
∂

∂y

)
· (ux, uy) =

∂

∂x
(u

x
) +

∂

∂y
(uy) ,

T = ∇ ·

 ∇u√
|∇u|2 + ε

 =

(
∂

∂x
,
∂

∂y

)
·

(
ux√

ux2 + uy2 + ε
,

uy√
ux2 + uy2 + ε

)

=
∂

∂x

(
ux√

ux2 + uy2 + ε

)
+

∂

∂y

(
uy√

ux2 + uy2 + ε

)
.

Assume 0 ≤ x, y ≤ L, h = L
M and let xi = ih, yj = jh, for 0 ≤ i, j ≤ M , be the

discrete points (in our numerical calculation, we have h = 1). By using the notations

uni,j ∼ u (xi, yj , tn) ,

∆x
±u

n
i,j = ±

(
uni±1,j − uni,j

)
,

∆y
±u

n
i,j = ±

(
uni,j±1 − uni,j

)
,

∆x
0u

n
i,j =

(
uni+1,j − uni−1,j

)
2

,

∆y
0u

n
i,j =

(
uni,j+1 − uni,j−1

)
2

,

the discrete forms of w, I, and T can be written as follows

wn
i,j =

1√
1 +

(
∆x

0u
n
i,j

h

)2

+
(

∆y
0u

n
i,j

h

)2

=
1√

1 +
(

un
i+1,j−un

i−1,j

2h

)2

+
(

un
i,j+1−un

i,j−1

2h

)2
, (3.5)

Ini,j =
1

h
∆x
−

[
∆x

+u
n
i,j

h

]
+

1

h
∆y
−

[
∆y

+u
n
i,j

h

]
=
uni+1,j − 2uni,j + uni−1,j

h2
+
uni,j+1 − 2uni,j + uni,j−1

h2
, (3.6)
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Tn
i,j =

1

h
∆x
−

 ∆x
+un

i,j

h√(
∆x

+un
i,j

h

)2

+
(

∆y
0u

n
i,j

h

)2

+ ε



+
1

h
∆−y

 ∆y
+un

i,j

h√(
∆x

0u
n
i,j

h

)2

+
(

∆y
+un

i,j

h

)2

+ ε



=
1

h2

 uni+1,j − uni,j√(
un
i+1,j−un

i,j

h

)2

+
(

un
i,j+1−un

i,j−1

2h

)2

+ ε



− 1

h2

 uni,j − uni−1,j√(
un
i,j−un

i−1,j

h

)2

+
(

un
i−1,j+1−un

i−1,j−1

2h

)2

+ ε



+
1

h2

 ui,j+1 − uni,j√(
un
i+1,j−un

i−1,j

2h

)2

+
(

un
i,j+1−un

i,j

h

)2

+ ε



− 1

h2

 uni,j − uni,j−1√(
un
i+1,j−1−un

i−1,j−1

2h

)2

+
(

un
i,j−un

i,j−1

h

)2

+ ε

 (3.7)

We can approximate the partial differential equation of model (3.1), by

un+1
i,j − uni,j

∆t
= wn

i,jI
n
i,j +

(
1− wn

i,j

)
Tn
i,j − λ

(
uni,j − u0i,j

)
, (3.8)

where n = 0, 1, 2, . . . is the time level. This equation yields the following explicit
scheme for approximating the partial differential equation (3.1) for all interior points
(xi, yj) such that 1 ≤ i, j ≤M − 1

un+1
i,j = uni,j + ∆t

(
wn

i,jI
n
i,j +

(
1− wn

i,j

)
Tn
i,j − λ

(
uni,j − u0i,j

))
. (3.9)

Assuming that the approximate solutions uni,j , for 1 ≤ i, j ≤ M − 1 have been com-
puted, we can approximate the boundary condition by un0,j = un1,j , u

n
M,j = unM−1,j , u

n
i,0 =

uni,1, u
n
i,M = uni,M−1, and un0,0 = un1,1, u

n
0,M = un1,M−1, u

n
M,0 = unM−1,1, u

n
M,M =

unM−1,M−1.
Since the diffusion based denoising models involve a huge amount of data, the

explicit schemes are easy to implement and well-suited for implementations.
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4. Experimental results and analysis

To show the efficiency of the proposed model, some experiments are carried out to
compare the denoising result of the new model with that of some other PDE-based
denoising models in terms of the Peak Signal to Noise Ratio (PSNR).The PSNR is
defined in decibels for 8-bit gray-scale images, as follows

PSNR = 10 log
2552 ×M ×N∑M

i=1

∑N
j=1 [Ior (i, j)− Ide (i, j)]

2
, (4.1)

where Ior and Ide are the original image and the denoised image, respectively. M and
N are the numbers of pixels horizontally and vertically, respectively, and 255 is the
peak signal with an 8-bit resolution. A higher PSNR usually indicates that the image
is of higher quality.

The commonly used 256×256 bit Lena, Rice, and Boat images are taken in figures.
The experimental results for Gaussian noise and speckle noise are presented.

Figure 1 presents the original Lena image, the corrupted image by the Gaussian
noise of standard deviation σn = 15, and the result obtained by the new model. Table
1 contains the PSNRs of the images obtained by different diffusion based schemes,
and the new model. It can be seen from Table 1 that the PSNR of the new method
is the maximum that means the denoising effect of the method is the best.

Figure 1. (A): original Lena image, (B): noisy image, and (C): the
result obtained by the new model

(a) (b) (c)

Table 1. The PSNRs of the images obtained by different algorithms
for Lena image

Model ID
model

PM
model

TV
model

Reference
[16]

Reference
[35]

Reference
[36]

New
weighted
model

PSNR 22.0817 29.2988 28.8990 29.5538 29.5632 29.6405 30.5919

For the speckle noise of variance v = 0.01, Figure 2 and Figure 3 show the original
image, the corrupted image, and the result obtained by the new model for Rice image
and Boat image, respectively. Table 2 presents the PSNR for different variances of the
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speckle noise for Rice image. The PSNR graph of this models is displayed in Figure
4. From Table 2, we can see that increasing the variance of the noise will decrease
the PSNRs of the models. However the PSNR of the new model is the largest among
the seven models for the same variance, which means that the denoising effect of the
new model is the best with regard to PSNR. The results of Table 2 show that the new
model is better in terms of PSNR than the other models especially for high variances
of the noise. Finally, from Figure 4, we can see that the proposed model for all noise
power has the highest PSNR among the seven models.

Figure 2. (A): original Rice image, (B): noisy image, and (C): the
result obtained by the new model

(a) (b) (c)

Figure 3. (A): original Boat image, (B): noisy image, and (C): the
result obtained by the new model

(a) (b) (c)

5. Conclusion

In this paper a new PDE-based image denoising model has been presented. After
taking into consideration the attributes of the isotropic diffusion and total variation
models, we integrated these models to get the new model. In the proposed model
the gradient has been used to determine whether the region is the edge or the flat
area. The model has been designed to perform more diffusion in the flat areas and
less diffusion in the edges of the image, and to effectively suppress noise while keeping
intact the features of the image. To illustrate the efficiency of the proposed model,
we have used the Peak Signal to Noise Ratio (PSNR) as the subjective criterion.
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Table 2. The PSNRs of different algorithms with different variances
of speckle noise for Rice image

Variance of the noise 0.01 0.02 0.03 0.04 0.05 0.06
ID model 22.0765 22.0725 22.0534 22.0188 22.0128 21.9443
PM model 30.0830 27.5987 25.5351 23.8745 22.5782 21.5451
TV model 29.8621 26.9747 25.0408 23.6125 22.5316 21.6208

Reference [16] 30.2097 27.4828 25.5930 24.1276 23.1229 22.1177
Reference [35] 29.8637 27.2318 25.2768 23.7694 22.5818 21.6283
Reference [36] 30.3763 27.2318 25.8173 24.3815 23.2838 22.3477

New weighted model 30.6060 29.1539 28.2630 27.7597 27.2172 26.7412

Figure 4. The PSNR graph of the ID model, PM model, TV model,
Ref. [16] model, Ref. [35] model, Ref. [36] model, and new model
for different speckle noise level for Rice image

0.01 0.02 0.03 0.04 0.05 0.06
20

21

22

23

24

25

26

27

28

29

30

31

The variance of noise

P
S

N
R

 

 

ID model

PM model

TV model

Ref. [16]

Ref. [35]

Ref. [36]

new model

Experimental results confirm the efficiency of the new approach compared with some
well-known models.
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