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Abstract In this research, we introduce an approach to find a family of sixth order Sturm-

Liouville problems having the same spectrum. Using Darboux Lemma and the

fact that any second order Sturm-Liouville problem with the Dirichlet boundary
conditions is equivalent to a sixth order Sturm-Liouville problem, the considered

problems are formulated.
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1. Introduction

Sturm-Liouville problems (SLP) are eigenvalue problems in one dimension and
arise in different fields such as quantum mechanics, vibrating rods and beams, theory
of hydrodynamic and magnetic hydrodynamic stability [5, 7, 21]. Also, these prob-
lems can be arisen in solving partial differential equations by separation of variables
method. The SLP appeared in hydrodynamic and magnetic hydrodynamic are of
higher order. Also, the higher order SLP appear in quantum mechanic, where certain
partial differential eigenvalue problem can be transformed to a system of ordinary
differential eigenvalue problem [7, 14]. Sturm-Liouville equations of order 2, 4 and 6
in canonical form are as follows:

−y′′(x) + q(x)y(x) = λy(x), x ∈ (a, b), (1.1)

y(4)(x) + (q1(x)y′(x))′ + q2(x)y(x) = λy(x), x ∈ (a, b), (1.2)

−y(6)(x) + (q1(x)y′′(x))′′ + (q2(x)y′(x))′ + q3(x)y(x) = λy(x), x ∈ (a, b).
(1.3)

Sixth order equations arise in study of circular structures [11]. For Sturm-Liouville
equation of order 2n, 2n boundary conditions at the end points a and b are given. The
exact form of the boundary conditions will be given in section 2. Sturm-Liouville equa-
tion together with the corresponding boundary conditions is called a Sturm-Liouville
problem. The value of λ that for which the SLP has a nontrivial solution is called
an eigenvalue; and the corresponding nontrivial solution is called an eigenfunction.
If the interval (a, b) is finite; and the coefficients qi(x) are in L1(a, b), then the SLP
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with the self-adjoint boundary conditions has real eigenvalues and can be ordered as
follows:

λ1 ≤ λ2 ≤ · · · , lim
k→∞

λk =∞, (1.4)

see [7, 8]. The eigenvalues of second order SLP with the Dirichlet boundary conditions
are simple [1, 12]. In SLP of order 2n, each eigenvalue has multiplicity at most n,
i.e., for each eigenvalue λ there are at most n linearly independent solutions [7].
The set of all eigenvalues is called the spectrum. Two SLP that have the same
spectrum are called isospectral. Sturm-Liouville problems have been studied by many
researchers. Spectral properties and related inverse problems have been studied in
[1, 3, 5, 17, 18, 19, 20]. In [7, 8, 9, 13, 14, 16, 23], the authors presented numerical
methods to approximate the eigenvalues. Isospectral SLP of order 2, 4, and 6 have
been studied in [5, 6, 10, 15, 22], but isospectral SLP of order six is not well studied
comparing to second and fourth order problems. In section 2, first we define an
equivalence relation between second and sixth order SLP, then we find a family of
sixth order SLP equivalent to a second order problem. Also, some properties of the
eigenvalues of fourth and sixth order SLP will be presented. In section 3, using the
obtained equivalence relation and Darboux Lemma we find a family of sixth order
SLP which are isospectral to a given one.

2. Equivalence relation and some eigenvalue properties

In this section, we define an equivalence relation between second and sixth order
SLP. Also, we obtain some properties of the eigenvalues.

Definition 2.1. Two SLP of order two and six are said to be equivalent iff the
following statements are equivalent:

(i) (λ, y) is an eigenpair of second order SLP,
(ii) (λ3, y) is an eigenpair of sixth order SLP.

The following theorem shows that if (λ, y) is an eigenpair of second order SLP,
then (λ3, y) is an eigenpair of a sixth order SLP.

Theorem 2.2. Suppose that q(x) ∈ C4[0, 1] and (λ, y) is an arbitrary eigenpair of
the second order SLP{

y′′(x) + (λ− q(x))y(x) = 0, x ∈ (0, 1),
y(0) = 0, y(1) = 0,

(2.1)

then, there exists a SLP of order six such that (λ3, y) is an eigenpair of it.

Proof. Let (λ, y) be an eigenpair of problem (2.1). Since q(x) ∈ C4[0, 1], the equation
(2.1) implies that y(x) ∈ C6[0, 1]. Differentiating twice from (2.1) and substituting
y′′ = (q(x)− λ)y we obtain

L4,qy := y(4)(x)− 2(q(x)y′(x))′ + (q2(x)− q′′(x))y(x) = λ2y(x). (2.2)

Taking limit from equation (2.1) as x tends to 0 and 1, respectively, and applying
boundary conditions (2.1), we obtain

y(0) = y′′(0) = 0, y(1) = y′′(1) = 0. (2.3)
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Thus (λ2, y) is an eigenpair of a fourth order SLP. Differentiating twice from the
equation (2.2) and substituting y′′ = (q(x)−λ)y, then using (2.2) in resulting equation
we obtain

L6,qy :=− y(6)(x) + 3[q(x)y′′(x)]′′ − [(3q2(x)− 4q′′(x))y′(x)]′

+ [q(4) + q3 − 2q′
2

− 3qq′′]y(x) = λ3y(x).
(2.4)

Taking limit from equation (2.2) as x tends to 0 and 1, respectively, and using the
boundary conditions (2.3), we obtain

y(4)(0)− 2q′(0)y′(0) = 0, y(4)(1)− 2q′(1)y′(1) = 0. (2.5)

Thus (λ3, y) is an eigenpair of sixth order SLP (2.4) with the boundary conditions
(2.3) and (2.5). �

In the following lemma, we prove that the sixth order SLP obtained in Theorem
2.2 is self-adjoint.

Lemma 2.3. The SLP (2.4) with the boundary conditions (2.3) and (2.5) is self-
adjoint.

Proof. We should prove that for any arbitrary functions u and v satisfying in the
boundary conditions (2.3) and (2.5), we have

〈L6,qu, v〉 = 〈u, L6,qv〉,

where the inner product is defined as 〈u, v〉 =
∫ 1

0
uvdx. Applying the integrating by

parts for integrals in 〈L6,qu, v〉 and using the boundary conditions on u and v we find,

〈L6,qu, v〉 = [v′(1)u(4)(1)− u′(1)v(4)(1)] + [u′(0)v(4)(0)− v′(0)u(4)(0)]

+ 〈u, L6,qv〉.
(2.6)

From boundary conditions (2.5), we conclude that the bracketed terms in the equation
(2.6) are zero. Thus the problem is self-adjoint. �

Lemma 2.3, shows that the eigenvalues of the sixth order SLP (2.4) with the
boundary conditions (2.3) and (2.5) are real and can be ordered as (1.4). In [15], it is
proved that the fourth order problem (2.2) with boundary conditions (2.3) and second
order problem (2.1) are equivalent in the sense of Definition 2.1. In the following
theorem, we find some eigenvalue properties of fourth order SLP (2.2) that we will
need in the rest of the paper.

Theorem 2.4. For fourth order SLP of the form (2.2), the following statements hold:

(i). The eigenvalues are nonnegative,
(ii). If λ = 0 is an eigenvalue, then it is simple and λ = 0 is an eigenvalue of

second order SLP (2.1) with the same eigenfunction of the problem (2.2).

Proof. Part (i). We prove by contradiction. Suppose that the operator L4,q has a
negative eigenvalue −λ2. Thus there exists an eigenfunction y(x), such that

L4,qy(x) = −λ2y(x).
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We can factorize, this equation as follows

(L4,q + λ2)y(x) = (D2 − q + λi)(D2 − q − λi)y(x) = 0,

where i is imaginary number and D denotes differential operator with respect to
x. Let ϕ(x) = (D2 − q − λi)y(x). It is obvious that ϕ(x) satisfies in the boundary
conditions (2.1). If ϕ(x) ≡ 0, then (λi, y(x)) is an eigenpair of (2.1). If ϕ(x) 6= 0, then
(−λi, ϕ(x)) is an eigenpair of (2.1). In both cases, we have a contradiction since the
eigenvalues of SLP (2.1) are real. Thus the eigenvalues of SLP (2.2) are nonnegative.
Part (ii). Suppose that (0, y) is an eigenpair of SLP (2.2), we have

(D2 − q)(D2 − q)y(x) = 0.

Let ϕ(x) = (D2− q)y(x), we claim that ϕ(x) is equal to zero. Suppose that ϕ(x) 6= 0,
we have

y′′(x)− q(x)y(x) = ϕ(x), (2.7)

and

ϕ′′(x)− q(x)ϕ(x) = 0. (2.8)

Multiplying equation (2.7) by ϕ(x) and equation (2.8) by y(x), subtracting the re-
sulting equations, then integrating from 0 to 1, we obtain:∫ 1

0

ϕ2(x)dx = 0.

This is a contradiction, thus ϕ(x) = 0 and (0, y) is an eigenpair of second order SLP
(2.1). Now, we prove the simplicity of the eigenvalue λ = 0. Suppose that y1 and
y2 are two linearly independent functions such that (0, y1) and (0, y2) are eigenpairs
of SLP (2.2). By the above results, (0, y1) and (0, y2) are eigenpairs of the second
order SLP (2.1), too. This is a contradiction with simplicity of the eigenvalues of
second order SLP. Thus, λ = 0 can not be the eigenvalue of fourth order SLP with
the multiplicity two. �

The following theorem together with Theorem 2.2 show that sixth order problem
(2.4) and second order problem (2.1) are equivalent in the sense of Definition 2.1.

Theorem 2.5. For sixth order SLP (2.4) with boundary conditions (2.3) and (2.5)
the following statements hold:

(i) If (λ3, y) is an arbitrary eigenpair of sixth order SLP (2.4) with the boundary
conditions (2.3) and (2.5), then (λ, y) is an eigenpair of second order SLP
(2.1),

(ii) The eigenvalues are simple.

Proof. Part (i). By Lemma 2.3, this problem is self-adjoint. Thus the eigenvalues are
real and can be denoted by λ3. Suppose that λ 6= 0 and (λ3, y) is an eigenpair. Thus
y(x) satisfies in equation (2.4). This equation can be factorized as follows:

{D4 − 2D[(q(x) +
λ

2
)D] + (q2(x)− q′′(x) + λq(x) + λ2)}

{D2 + λ− q(x)}y(x) = 0. (2.9)
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Let ϕ(x) = {D2 + λ − q(x)}y(x). We claim that ϕ(x) = 0. Suppose that ϕ(x) 6= 0.
Since y(x) satisfies in the boundary conditions (2.3) and (2.5), thus ϕ(x) satisfies
in the boundary conditions (2.3). Equation (2.9) is a fourth order Sturm-Liouville
equation in terms of ϕ(x) and can be written as follows:

{D4 − 2D[(q(x) +
λ

2
)D] + [(q(x) +

λ

2
)2 − (q(x) +

λ

2
)′′]}ϕ(x)

= −3

4
λ2ϕ(x).

(2.10)

Equation (2.10) shows that − 3
4λ

2 is an eigenvalue of a fourth order SLP of the form

(2.2), in which the function q(x) is replaced by q(x) + λ
2 . This is a contradiction with

part (i) of Theorem 2.4. Thus ϕ(x) = y′′(x) + (λ − q(x))y(x) = 0, and (λ, y) is an
eigenpair of SLP (2.1). Now, we prove part (i) for the case λ = 0. Suppose that (0, y)
is an eigenpair of (2.4). Similar to the case λ 6= 0 by substituting λ = 0 in equation
(2.10), we obtain:

{D4 − 2D[q(x)D] + [q2(x)− q′′(x)]}ϕ(x) = 0. (2.11)

Thus (0, ϕ(x)) is an eigenpair of fourth order SLP and by part (ii) of Theorem 2.4, it
is also eigenpair of second order SLP (2.1). Analogous to the proof of Theorem 2.4,
we have ∫ 1

0

ϕ2(x)dx = 0.

Thus ϕ(x) = 0 and (0, y) is an eigenpair of (2.1).
Proof of part (ii). By part (i), if λ3 is an eigenvalue of sixth order SLP with multiplicity
k > 1, then λ is an eigenvalue of second order problem with the same multiplicity
k > 1. This is a contradiction with the simplicity of the eigenvalues of the second
order SLP. Thus the eigenvalues are simple. �

Theorems 2.2 and 2.5 show that the SLP (2.1) and sixth order SLP (2.4) are
equivalent in the sense of Definition 2.1.

3. Isospectral sixth order Sturm-Liouville problems

In this section, by using the equivalence relation obtained in section 2 and Darboux
Lemma, we find a family of sixth order SLP which are isospectral to a given one.
If A and B are two linear operators, then the operators AB and BA have the same
eigenvalues except perhaps for zero eigenvalue. Thus for finding isospectral operators,
we can factorize the given operator as a product of two operators. Then by reversing
the factors, we obtain a new operator which is isospectral to the initial one. This idea
is applied for second order SLP (2.1) and obtained a family of isospectral problems.
This method is known as Darboux Lemma:

Lemma 3.1. (Darboux Lemma)[5, 15] Suppose that (λn, gn) is an arbitrary eigenpair
of the problem: {

y′′ + (λ− q̂)y = 0,
y(0) = 0, y(1) = 0.

(3.1)
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Then problem (3.1) and problem{
y′′ + (λ− qn,α(x))y = 0,
y(0) = 0, y(1) = 0.

(3.2)

have the same eigenvalues, where

qn,α(x) = q̂(x)− 2(ln(1 + α

∫ x

0

g2n(t)dt))′′, n = 1, 2, · · · , (3.3)

the eigenfunctions {gn}∞n=1 are orthonormal and α > −1 is an arbitrary real number.

This idea is applied for fourth and sixth order SLP [2, 4, 22]. But unlike second
order problems, the factorization of fourth and sixth order equations lead to a system
of nonlinear ordinary differential equation. In general, we can not solve this system
analytically. In [4, 22], for different cases the nonlinear system is solved by using Lie
symmetry method and obtained isospectral problems. In relation (2.9), the sixth order
equation is factorized as a product of two operators of second and fourth order. Simple
calculations show that by reversing the factors, we don’t obtain new sixth order SLP.
Thus we can not obtain isospectral problems by this idea. In the following Theorem
using Darboux Lemma and equivalence relation obtained in the previous section we
find a family of sixth order problems of the form (2.4) which are isospectral.

Theorem 3.2. Let q(x) ∈ C4[0, 1] be given, then sixth order SLP (2.4) with the
boundary conditions (2.3) and (2.5) is isospectral to the following problems:

−u(6)(x) + 3[qn,α(x)u′′(x)]′′ − [(3q2n,α(x)− 4q′′n,α(x))u′(x)]′

+[q
(4)
n,α + q3n,α − 2q′

2

n,α − 3qn,αq
′′
n,α]u(x) = λ3u(x),

u(0) = u′′(0) = u(4)(0)− 2q′n,α(0)u′(0) = 0,

u(1) = u′′(1) = u(4)(1)− 2q′n,α(1)u′(1) = 0,

(3.4)

where qn,α is given by (3.3).

Proof. From Lemma 2.3, both of the problems (2.4) and (3.4) are self-adjoint. Thus
they have real eigenvalues which can be denoted by λ3. It should be proved that if λ3

is an arbitrary eigenvalue of problem (2.4) then, λ3 is an eigenvalue of the problem
(3.4) and vice versa. Suppose that (λ3, y) is an arbitrary eigenpair of the problem
(2.4). Theorem 2.5 implies that (λ, y) is an eigenpair of (2.1). Using Darboux Lemma,
we conclude that there exists an eigenfunction u(x) such that (λ, u) is an eigenpair of
the problem{

u′′(x) + (λ− qn,α(x))u(x) = 0, x ∈ (0, 1),
u(0) = 0, u(1) = 0.

(3.5)

Applying Theorem 2.2 for problem (3.5) we find that (λ3, u) is an eigenpair of the
problem (3.4). Similarly, we can prove that if (λ3, u) is an arbitrary eigenpair of
the problem (3.4) then (λ3, y) is an eigenpair of the problem (2.4) with boundary
conditions (2.3) and (2.5). Thus these problems are isospectral. �

Note that the family of isospectral problems obtained in Theorem 3.2 are different
from the results in [4]. We apply this method in the following example.
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Example 3.3. Consider the following SLP of order six:
y(6)(x) = −λ3y(x), 0 < x < 1,
y(0) = y′′(0) = y(4)(0) = 0,
y(1) = y′′(1) = y(4)(1) = 0.

(3.6)

Using Theorems 2.2 and 2.5, this problem is equivalent to the following second order
problem: y′′(x) = −λy(x), 0 < x < 1,

y(0) = 0,
y(1) = 0.

(3.7)

The eigenvalues of the problem (3.7) are λn = n2π2 and the corresponding orthogonal

eigenfunctions are gn(x) =
√

2 sin(nπx). By Darboux Lemma, the problem (3.7) is
isospectral to the problem{

u′′(x) + (λ− qn,α(x))u(x) = 0, 0 < x < 1,
u(0) = 0, u(1) = 0,

(3.8)

where

qn,α = 4α
α− α cos(2nπx)− nπ(1 + αx) sin(2nπx)

(1 + αx− α
2nπ sin(2nπx))2

. (3.9)

Using Theorems 2.2 and 2.5, problem (3.8) is equivalent to the problem
u(6)(x)− 3[qn,α(x)u′′(x)]′′ + [(3q2n,α(x)− 4q′′n,α(x))u′(x)]′

−[q
(4)
n,α + q3n,α − 2q′

2

n,α − 3qn,αq
′′
n,α]u(x) = −λ3u(x),

u(0) = u′′(0) = u(4)(0) + 8αn2π2u′(0) = 0,

u(1) = u′′(1) = u(4)(1) + 8αn2π2 cos2(1)
1+α u′(1) = 0.

(3.10)

Using Theorem 3.2, for any n ∈ N and real number α > −1, problem (3.10) defines a
family of two parameters sixth order SLP which are isospectral to the problem (3.6).
Note that for α = 0, the problem (3.10) reduces to the problem (3.6).

Remark 3.4. Continuing the process of Theorem 2.2, we can find Sturm-Liouville
problems of order 8, 10, · · · , which are non self-adjoint. Note that in this paper we
need the problem to be self-adjoint. For example, the problem of order 8 is self-adjoint
if q′(0) = q′(1) = 0. But in Darboux Lemma we have q′n,α(0) = −4αg′n

2(0) 6= 0 and

q′n,α(1) =
−4αg′n

2(1)
1+α 6= 0. Thus we can not obtain isospectral problems of order eight

using this method.

4. conclusion

In this paper, we have introduced an equivalence relation between second and sixth
order SLP and proved that the second order SLP with the Dirichlet boundary condi-
tions is equivalent to a class of sixth order SLP. Some properties of the eigenvalues of
fourth and sixth order SLP are investigated. The isospectral problems are obtained
by using the equivalence relation and Darbox Lemma.
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