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Abstract Many quick-link optimization models of transferring corrosive materials, need some

constraints to change the output space such that all of the criteria are met, which
forms a nonlinear problem with specific constraints. So we use an approach for find-

ing global solutions of mixed-integer nonlinear optimization problems with ordinary

differential equation constraints on the shortest path problem connective body com-
position because we need to save time. For the solution of constrained differential

equations, we present a numerical method by coupling an implicit numerical method,

and the results will be expressed by showing that the optimal path is selected.
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1. Introduction

Some problems of optimization, involve both nonlinear dynamic systems and dis-
crete decisions that affect the quality of the final plan. Decision problems are a kind
of non-linear problem that is a combination of the difficulty of discrete variables and
nonlinear functions. This problem is named mixed-integer nonlinear programming
(MINLP) problems. This paper has connections to optimization with ordinary dif-
ferential equations (ODE) or partial differential equation (PDE) constraints for a
starting point into this area [3]. Optimisation problems and combine it with ODE are
often used to describe systems dynamic behavior in many fields. In addition in some
cases, the many phenomena of interest are nonlinear in nature and are described by
systems of ODEs or by differential-algebraic equation (DAE) systems [4]. Differential
constraints were introduced originally in the theory of partial and ordinary differential
equations of the first order. In particular, Jacobi used differential constraints to find
the total integral of the nonlinear equation and Konig applied them to the equation
of the second order [2]. Some approach is to use the first discretize, then optimize
approach. Discrete decisions are often handled by branch-and-bound. The α-BB
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method for Nonlinear Programming (NLP) was introduced by Adjiman [5, 6] and
Sager [8] applied the convexification method to handle discrete decisions over time
and show how to efficiently compute feasible solutions. Papamichail and Adjiman
consider parametric ODEs and construct approximations via the α-BB approach [9].
Using a relaxations method based on piecewise linearization is one of optimizing ap-
proach and general first discretize [7]. Bock, Kirches, and Meyer discuss problems in
which the discrete decisions depend on the state variables and present a reformulation
method for this kind of problem [1]. Global approaches are based on convex relax-
ations of the solution space. Singer and Barton consider convex relaxation methods
for ODEs constrained and applied Branch-and-Bound to solve it [10, 11].

In this paper, we use some algorithms to solve nonlinear optimization problems as
globally with ODE constraints. We consider problems of the following form [12]:

min C(x, y, z)

s.t. G(x, y, z) ≤ 0,

∂ky(k) = f(k, x, y(k)) , k ∈ [0, K] (Pode)

x ∈ X, y ∈ Y, z ∈ Z,

(1.1)

where X ⊂ Rl and Y ⊂ Rn are polytopes and Z ⊂ Zm is bounded. Furthermore, the
objective function is C : X×Y ×Z → R and constraints are given by G : X×Y ×Z →
Rs. Thus, the variables y(k) are functions that have to solve an ODEs specified by
the function f : R × Rk × Rn → Rn. Moreover, continuous variables x and integer
variables z are present. If we consider 0 and K as the beginning and end of the
interval, we can have two conditions on continuous variable y, so that y in objective
function and differential constrained changes to y0, yK (C(x, y0, yK , z)). So we
have

y0 = y(0), yK = y(K) ,

y0 ∈ Y 0, yK ∈ Y K .

Also, we assume that C,G, and f are continuously differentiable. So, the differential
equations are made by n one-dimensional ODEs ∂kyi(k) = fi(k, x, yi(k)) for i =
1, . . . , n, one for each of the n pipelines in the corresponding network. We will use a
solution method to globally solve, and we will implement the example of connective
body composition with the shortest path problem to illustrate the approach.

The remainder of this paper is organized as follows. In Section 2, the solution
method is defined for the problem. Section 3 provides a brief introduction to interval
analysis and Taylor models, as well as a constraint propagation procedure on Taylor
models. Section 4 reviews the new validated method for parametric ODEs, which
makes use of Taylor models. Section 5 then outlines the algorithmic procedure for
solving the global optimization problem. Finally, in Section 6, we present the results
of some numerical experiments that demonstrate the effectiveness of the proposed
approach for parameter estimation of dynamic systems.
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2. Solution Method for ODE Constrained Problem

The shortest path problem (SPP) involves the constrained shortest path problem
in a specified graph where the arc resources are determined, and the objective is
finding the shortest path from an initial node to an end node. In most routing and
crew scheduling applications where they generate with some subproblem corresponds
to the shortest path problem with resource constraints (SPPRC). We know that in
the deterministic SPP all the parameters such as distance, time or cost are known.
So consider the SPP as follows

min cTx

s.t : Mx = b,

x ∈ {0, 1}n.

Note that this model only has one source, on the other hand, x ∈ {0, 1}n means that
if there is a path from one node to another node x will be 1, otherwise 0. We consider
Mm×n as a nod-arcs incidence matrix, where m, n are the number of nodes and arcs,
respectively.

In the shortest path problems, in addition to the fact that the problem may have a
source, other indicators can be considered in the problem. To illustrate what we will
say later, we give an example in numerical form.

Figure 1. Graph with 6 nodes and 7 arcs.
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This example shows a 6-point graph in which each edge consists of two indeces: the
first one is cost and the second one is time. We try to minimize the cost of transfer
from the source node to the destination. For this example, there is a differential
equation in time, and in addition, the model must be satisfied in condition t ≤ 12.
Perhaps this question arises against, why the time is not considered as a objective
function? Maybe your path has a shorter time, but the cost of transporting goods is
not reasonable and expected. Therefore, we select a path that will be optimized for
both of the indicators. We present a table for Figure 1, includes paths, costs, and
times information.
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Paths Costs Times
1 1 → 2 → 6 4 14
2 1 → 2 → 4 → 6 5 10
3 1 → 3 → 5 → 2 → 6 8 12
4 1 → 3 → 5 → 2 → 4 → 6 9 13

Table 1. Table of paths, costs, and times information for every path. Optimal

time is t ≤ 12.

Path number 2 is optimal. Note that path 1 has a lower cost, but the passage
time is not optimal, and in path 3, while the time is optimal, the cost is too high.
Therefore, path 2 has been selected with optimal cost and time.

3. ODE Model

In this section, we will present the SPP model with a ODE constraint as follows

min cTx

s.t : Mx = b,

dy

dt
= f(t, y(t)),

g(x) ≤ 0,

y(0) = y0,

x ∈ {0, 1}n,
y(0) ∈ Y 0,

(3.1)

where Y 0 ∈ Rn.
In the numerical example section, the time constraint will also be added. According

to reference [12], the authors are trying to approximate differential constraints by
using a convex function below the ODE constraint curve and a concave function
above the ODE constraint, but in this article, we have done differently. Since for
our example with more attention to local truncation error, the trapezoidal numerical
method is an upper bound on the differential equation and the Euler implicit methods,
explicit Euler, and the midpoint method are lower bound on the differential equation,
therefore, instead of convex and concave functions, a favorable upper bound and lower
bound are used.

Before examining numerical methods, there are some discussions about the prop-
erties of the initial value-problem of

dy

dt
= f(t, y(t)),

y(0) = y0,
(3.2)

including the concepts of existence and the unique solution.
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Theorem 3.1. [13] Suppose D is a open-connected set from R2, f(t, y(t)) be a con-
tinuous function from y to t for all (t, y) ∈ D. Assume (t0, y0) is a interior point of
D. if f(t, y) satisfies on Lipschitz condition, such as

| f(t, y1)− f(t, y2) |≤ K | y1 − y2 |, ∀(t, y1), (t, y2) ∈ D, (3.3)

then there is a uniquely function Y (t) defined on the interval [t0 − α, t0 + α] where
α > 0, which satisfies to the following problem

Y
′
(t) = f(t, Y (t)), t0 − α ≤ t ≤ t0 + α,

Y (t0) = Y0.

In the theorem (3.1), the Lipschitz condition was expressed for f . If
df(t, y)

dt
is a

continuous function of (t, y) in D (closure of D) with D convex, obviously inequality
(3.3) is derived. In this case with a finite condition, we can use

K = max
(t,y)∈D

| df(t, y)

dt
| .

Otherwise, it is easy to use a smaller set of D, including (t−0, Y0), which is bounded.
The value of α in the theorem (3.1) depends on the initial value-problem of (3.2). For
some equations such as the linear equation, the solution exists for every t, and α can
be considered infinite. For many nonlinear equations, the solution is only available in
a bounded interval.

Assume F : T ×Y 0 → Rn and (t, y0)→ y(t). Then we can replace ODE constraint
with

yt − F (t, y0) = 0.

Then, the model (3.1) will be change as follows

min cTx

s.t : Mx = b,

yt − F (x, y0) = 0,

g(x) ≤ 0,

x ∈ {0, 1}n,
y(0) ∈ Y 0.

(3.4)

Assumption 3.2. [12] There exist functions F l : T × Y 0 → Rn and Fu : T × Y 0 →
Rn, which fulfill the inequality

F l(t, y0) ≤ F (t, y0) ≤ Fu(t, y0),

for all t ∈ T and y0 ∈ Y 0. In addition, we assume that on the polytopes T, Y 0 the
functions F l

i and Fu
i converge uniformly to Fi for Ni →∞, i = 1, . . . , n.
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Figure 2. Existence and stability of the method.

Figure 1 shows that for every ODE constraint, e.g. y
′
(t) = −y(t), we can find

numerical methods that satisfied in F l ≤ y(t) ≤ Fu. For this example, we present
lower bound with Euler numerical method and upper bound with the backward Euler
numerical method.

How we can know there exist functions F l and Fu, which satisfy Assumption (3.2)?
We suppose an one-dimensional ODE

y(0) = y0, ∂ty(t) = f(t, y(T )) , t ∈ [0, T ],

with usage implicit one-step methods (Euler) with the length of step we can write

y0 = y0, yi+1 = yi + hifh(ti, hi, yi, yi+1) , ∀i = 0, . . . , N − 1, (3.5)

subject to ti is increased, then we have

0 = t0 < t1 < · · · < TN = T.

Define steps with hi := ti+1− ti, ∀i = 0, . . . , N − 1. The case that is important is the
definition of F l and Fu using equation (3.5)

F l : y0 7→ yN ,

and or

Fu : y0 7→ yN .

The goal is to get the lower and upper bounds at y(L) and close together so that the
gap between the two borders is minimized.

To analyze the error, assume that the initial value problem has a unique solution of
Y (t) on t0 ≤ t ≤ b and also, this solution has a boundary second derivative Y

′′
(t) on
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this interval. We start the discussion by applying Taylor’s theorem for approximation
(3.2)

Y (tn+1) = Y (tn) + hY
′
(tn) +

1

2
h2Y

′′
(ξn),

where tn ≤ ξn ≤ tn+1. Given that Y (t) is the solution to the differential equation, we
can write

Y
′
(t) = f(t, Y (t)).

Using Taylor approximation

Y (tn+1) = Y (tn) + hf(tn, Y (tn)) +
1

2
h2Y

′′
(ξn), (3.6)

where the sentence

Tn+1 =
1

2
h2Y

′′
(ξn), (3.7)

is named truncation error of Euler method. To analyze error in the Euler’s method,
we can write

Y (tn+1)− yn+1 = Y (tn)− yn + h[f(tn, Yn)− f(tn, yn)] +
1

2
h2Y

′′
(ξn), (3.8)

where yn+1 = yn + hf(tn, yn). Therefore, we use the local truncation error

Y (tn)− yn + h[f(tn, Yn)− f(tn, yn)] ≥ 0. (3.9)

Lemma 3.3. [12] Consider a method of the form (3.5) for a scalar ODE, y(t) ∈ R,
and let the local truncation error of the method be nonnegative, the inequality

y(s+ h)− y(s)− hfh(s, h, y(s), y(s+ h)) ≥ 0,

holds for all s ∈ [0, S] and h ≥ 0 with s+ h ≤ S. Suppose the derivatives satisfy

b ≤ ∂yfh(s, h, y, y),

and

∂yfh(s, h, y, y) ≤ B,
for constants b, B ∈ R. Then if

0 < hi ≤ hmax =

{
∞ if b ≥ 0 and B ≤ 0

1
max{−b,B} if otherwise

,

for all i = 1, . . . , N , the one-step method produces a lower bound on the solution
y(t) , i.e.,

yi ≤ y(ti), i = 1, . . . , N,

if on the other hand the local truncation error of the method is nonpositive, i.e., the
inequality

y(t+ h)− y(t)− hfh(t, h, y(t), y(t+ h)) ≤ 0,

holds for all t ∈ [0, T ] and h ≥ 0 with s + h ≤ S, then we obtain under the same
assumptions

yi ≥ y(ti), i = 1, . . . , N.
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Lemma 3.4. [12] If we consider an explicit one-step method, i.e., fh(t, h, y, y) is
independent of y, that is yi+1 = yi − hifh(ti, hi, yi) , then the previous lemma yields
that we can choose

hmax =

{
∞ if b ≥ 0
− 1

b else
.

Remark 3.5. [12] If we consider an ”end value problem” instead of an initial value
problem, (∂ty(t) = f(t, y(t)) holds for t ∈ [0, T ] and y(T ) = yT ) then, Lemma 7 still
holds true with the modification, where the bounds are now reversed, i.e. positive
truncation error now yields upper bounds and negative truncation error now yields
lower bounds.

Consider the following model given that the ODE constraint is a function of time

min cTx (3.10)

s.t : Mx = b, (3.11)

x ∈ {0, 1}n, (3.12)

dT

dt
= f(t, T (t)), (3.13)

T (0) = T 0, (3.14)

T =
−−−→
Time • x, (3.15)

T (t) ≥ z. (3.16)

For the model (3.10), steps of the solution are as follows

The SPP to use in this whole article is based on minimizing the cost. Now, we
want to present a model that aims to minimize time. The related cost condition is
considered as a constraint.

min T (3.17)

s.t : cTx ≤ C, Mx = b, x ∈ {0, 1}n, (SPPconstraint) (3.18)

dT

dt
= f(t, y(t)), (3.19)

t =
−−→
time • x, (3.20)

T (0) = T 0, (3.21)

T (t) ≥ z. (z is temperature parameter) (3.22)
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Algorithm 1: Calculate shortest path problem with ODE constraints

1 INPUT: c,M, b, z,
−−−→
Time

2 OUTPUT: T (t), cTx, x

3 STEP 1:

4 first solve the shortest path problem without considering the ODE
constraints(15-18)(I).

5 min cTx

6 s.t : Mx = b

7 cx ≥ 0

8 x ∈ {0, 1}
9 and get x∗ as a optimal solution

10 STEP 2:

11 paste the obtained x into the following conditions (II).

12 F l ≤ T t ≤ Fu

13 T (0) = T 0

14 T =
−−−→
Time • x

15 T (t) ≥ z
16 if x satisfied in conditions (II)

17 go STEP 3

18 else

19 replace cx ≥ cx∗ with cx ≥ 0 and solve model (I)

20 go STEP 2

21 END

Algorithm 2: Calculate shortest path problem with ODE constraints

1 INPUT: c,M, b, z,
−−→
time

2 OUTPUT: T (t), x

3 first solve ODE constraint with a numerical methods where points are
equidistant.

4 obtain F l, Fu functions

5 F l ≤ T (t) ≤ Fu
6 if F l be convex

7 solve model (3.17) with constraint F l ≤ T (t)

8 else if

9 Fu be concave

10 solve model (3.17) with constraint T (t) ≤ Fu

11 else

12 T (t) yields an approximate solution of the equation that don’t necessarily
calculate the upper and lower bound then select a constraint between
F l ≤ T (t) and T (t) ≤ Fu and solve model (3.10).
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4. Numerical Example

One of the issues that we are facing today is the transport of corrosive materials,
e.g. transport of transplantation’s organ, from one point to the next. We know
for that matter the most important thing is the rapid arrival of the materials to
the destination to prevent corruptions. So time is one of the factors that arise in
this issue. In addition to this, the transfer will lead to a cost in any way that goes
through. Then, we need the cost of transferring as low as possible. The goal is to find
the shortest path. An example is presented in this section, which consists of |V | = 12
(nodes) and |E| = 17 (edges). Suppose that the material can be used up to a certain
temperature. First, we heat the material up to 120 °C (°C is Degree Celsius). If the
environment temperature is 25° C, the temperature changes with respect to time are
as follows:

dT

dt
= k(T − 25),

where K = −0.346573 for this type of material. The network is supposed to be an
oriented network. For directions, ai → aj s.t : i < j. The input generated as follows

Figure 3. Graph with 12 nodes and 17 arcs.

4 10

2 7

1 5 9 12

3 8

6 11

Table 2. Forward Euler for lower bound and backward Euler for
upper bound; model (3.10).

z Optimal values Fu − F l CPU (s)

h=0.2 27 cT x=18, t=10 0.7 0.9710

25 cT x=15, t=47 9.4804e-06 0.4174

h=0.02 27 cT x=18, t=10 0.0713 0.9117

25 cT x=15, t=47 9.0761e-07 0.4376

h=0.005 27 cT x=18, t=10 0.0178 1.6073

25 cT x=15, t=47 2.2630e-07 0.4805

Optimal path:z = 25; 1→ 2→ 4→ 10→ 12.
Optimal path:z = 27; 1→ 3→ 5→ 7→ 9→ 10→ 12.
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Table 3. Trapezoidal numerical method for lower bound and back-
ward Euler for upper bound; model (3.10).

z Optimal values Fu − F l CPU (s)

h=0.2 27 cT x=18, t=10 0.3654 0.7908

25 cT x=15, t=47 5.9163e-06 0.3438

h=0.02 27 cT x=18, t=10 0.0357 0.8502

25 cT x=15, t=47 4.6576e-07 0.3679

h=0.005 27 cT x=18, t=10 0.0089 0.8636

25 cT x=15, t=47 21.1391e-07 0.4055

Table 4. Forward Euler for lower bound and backward Euler for
upper bond; model (3.17).

Lower bound Upper bound Fu − F l CPU (s)

h=0.2, cT x=18 2.4883 3.0517 0.2299 0.0911

h=0.02 cT x=18 2.6915 2.7459 0.0266 0.1345

h=0.005 cT x=18 2.7115 2.7251 0.0067 0.0932

All the experiments were carried out on a PC with windows system and Intel(R)
Core(TM) i7-7700K CPU@ 4.20 GHz and 8Gb of RAM. Also, example solved in
Matlab by mosek solver.

Conclusion

A numerical method for the differential equations coupled with a global optimiza-
tion problem was investigated. Table 2 and Table 3 has presented a different numerical
method for the lower and upper bound. According to the results, a trapezoidal nu-
merical method provides a better result and the difference between the upper and
lower bounds is at the lower level. The results show that we have been able to find a
path, that in addition to the shortest path, time and cost are at the best predicted.
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