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Abstract In this paper, we apply an analytical method, namely, the sine-Gordon expansion
method and extract some complex optical soliton solutions to the (2+1)-dimensional
extended shallow water wave model, which describes the evolution of shallow water
wave propagation. We obtain some complex mixed-dark and bright soliton solutions
to this nonlinear model. Considering some suitable values of parameters, we plot
the various dimensional simulations of every results found in this manuscript. We
observe that our result may be useful in detecting some complex wave behaviors.
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1. Introduction
Plasma is a mixture of ions, free electrons, and also neutral atoms or molecules

[26]. The major difference between plasma and other matter is that plasma contain
charged particles, furthermore, an important characteristic of plasmas is their ability
to sustain a great variety of wave phenomena [3, 26]. Charged particles produce
wave propagation in various powers. Such a kind propagation symbolize different
prototype of matter, and, give important clues about charged particles from cell wave
propagations to water wave propagations. In this sense, many nonlinear evolution
equations (NLEEs) for various complex physical problems arising in the fields of
nonlinear science, such as fluid mechanic, plasma physics, along with sets of waves
such as magnetohydrodynamic waves. Moreover, in the last several decades, both
various approaches, power tools and their modifications such as exponential function
method, the modified simple equation method, the Kudryashov method, sumudu
transform method, (G′

/G)-expansion method, Hirota bilinear method and many more
techniques [1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 54] have been
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presented to the literature. In this direct, one of such models is the extended shallow
water wave model (ESWWM) with (2+1)-dimensional defined as [19, 40, 46, 54]

uyt + 3uxxxy − 3uxxuy − 3uxuxy + kuxy = 0, (1.1)
where k is constant. Equation (1.1) is a frequently utilized model for exploring dy-
namics of solitons and nonlinear waves to describe the (2+1)-dimensional interaction
of a Riemann wave propagating along the y-axis with a long wave propagating along
the x-axis in fluid dynamics, plasma physics and weakly dispersive media [40].
This paper is constructed in the following sections. We present the general proper-
ties of the powerful sine-Gordon expansion method (SGEM) [5, 6, 7], in the second
section. We find some combined complex dark-bright optical soliton solutions to the
Eq. (1.1) by utilizing SGEM in the third section. We present a conclusion in the last
section of the paper.

2. General Properties of SGEM

In this section, we discuss the general facts of SGEM. Consider the following sine-
Gordon equation [51, 52, 53]:

uxx − utt = m2sin(u), (2.1)
where u = u(x, t) and m is a real constant.

Applying the wave transformation u = u(x, t) = U(ξ), ξ = µ(x− ct) to Eq. (2.1),
yields the following nonlinear ordinary differential equation (NODE):

U
′′
=

m2

µ2(1− c2)
sin(U), (2.2)

where U = U(ξ), ξ is the amplitude of the travelling wave and c is the velocity of
the travelling wave. Reconsidering Eq. (2.2 ), we can write its full simplification as:

[(U
2

)′]2
=

m2

µ2(1− c2)
sin2

(U
2

)
+K, (2.3)

where K is the integration constant.
Substituting K = 0, w(ξ) = U

2 and a2 = m2

µ2(1−c2) in Eq. (2.3), gives:

w
′
= asin(w), (2.4)

Putting a = 1 in Eq. (2.4), we have:

w
′
= sin(w). (2.5)

Equation (2.5) is variables separable equation, we obtain the following two signifi-
cant equations from solving it;

sin(w) = sin(w(ξ)) =
2peξ

p2e2ξ + 1

∣∣∣∣∣
p=1

= sech(ξ), (2.6)
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cos(w) = cos(w(ξ)) =
p2e2ξ − 1

p2e2ξ + 1

∣∣∣∣∣
p=1

= tanh(ξ), (2.7)

where p is the integral constant.
For the solution of the following nonlinear partial differential equation;

P (u, ux, ut, uxx, utt, uxt, uxxx, . . .) = 0, (2.8)
we consider,

U(ξ) =

n∑
i=1

tanhi−1(ξ)
[
Bisech(ξ) +Aitanh(ξ)

]
+A0. (2.9)

Equation(2.9) can be rewritten according to Eqs. (2.6) and (2.7) as follows:

U(w) =

n∑
i=1

cosi−1(w)
[
Bisin(w) +Aicos(w)

]
+A0. (2.10)

We determine the value n under the terms of NODE by balance principle. Letting
the coefficients of sini(w)cosj(w) to be all zero, yields a system of equations. Solving
this system by using various computational programs gives the values of Ai, Bi, µ
and c. Finally, substituting the values of Ai, Bi, µ and c in Eq. (2.9), we obtain the
new travelling wave solutions to Eq. (2.8).

3. Application of SGEM

In this section, the application of SGEM to the ESWWM is presented. Firstly,
we start by transforming Eq.(1.1) into a nonlinear ordinary differential equation by
using the following travelling wave transformation:

u(x, y, t) = mx+ ny − ct. (3.1)
Substituting Eq. (3.1) into Eq. (1.1), the following nonlinear ordinary differential
equation is obtained:

3m3U (4) − 6m2U ′U ′′ + (km− c)U ′′ = 0. (3.2)
Integrating once of Eq. (3.2) and getting to zero of integral constant gives the following
nonlinear model

3m3U ′′′ − 3m2(U ′)2 + (km− c)U ′ = 0. (3.3)
For simplicity, when we reconsider as V = U ′, then, we can rewrite Eq.(3.3) as

3m3V ′′ − 3m2V 2 + (km− c)V = 0. (3.4)
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With the help of the Balance principle, between V 2 and V
′′ in Eq(3.4), yields

n = 2. Using n = 2 into Eq. (2.9) produces

V (ξ) = B1sech(ξ)+A1tanh(ξ)+ tanh(ξ)(B2sech(ξ)+A2tanh(ξ))+A0. (3.5)
and into Eq. (2.10) gives

V (w) = B1sin(w) +A1cos(w) +B2cos(w)sin(w) +A2cos(w)
2 +A0. (3.6)

Differentiating Eq. (3.6) twice and getting integrate constants to zero, yields

V
′′
= B1cos

2(w)sin(w)−B1sin
3(w)− 2A1sin

2(w)cos(w)+B2sin(w)cos(w)
3

−5B2sin(w)
3cos(w)− 4A2sin(w)

2cos(w)2 + 2A2sin(w)
4. (3.7)

Inserting Eqs. (3.6) and (3.7) into Eq. (3.4), gives the an algebraic equation in
trigonometric function including various form of sini(w)cosj(w). Getting the coeffi-
cients of trigonometric terms in the same power to zero, give a system. Solving this
system with aid of symbolic software to obtain the values of the coefficients involved,
we find the following coefficients in each case obtained from the set of algebraic equa-
tion systems, and it gives the travelling wave solutions to Eq.(1.1).

Case 1:

A0 =
−2iB2

3
, A1 = 0, A2 = iB2, B1 = 0,m =

iB2

3
, c =

1

9
iB2(3k +B2

2)

substituting these coefficients into Eq. (3.5), we have

u1(x, y, t) = −sech[ny +
1

3
iB2x− 1

9
iB2(3k +B2

2)t]B2 +
1

3
iB2[ny +

1

3
iB2x

−1

9
iB2(3k +B2

2)t]− iB2tanh[ny +
1

3
iB2x− 1

9
iB2(3k +B2

2)t]. (3.8)
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Figure 1. The 3D surfaces of Eq. (3.8) under the values B2 = 1.5,
n = 2, k = 3, y = 0.03, −12 < x < 12, −12 < t < 12.

Figure 2. The contour surfaces of Eq. (3.8) under the values B2 =
1.5, n = 2, k = 3, y = 0.03, −180 < x < 180, −180 < t < 180.

Figure 3. The 2D surfaces of Eq. (3.8) under the values B2 = 1.5,
n = 2, k = 3, y = 0.03, t = 0.85, −120 < x < 120.

Case 2: When

A1 = 0, A2 =
−3A0

2
, B1 = 0, B2 =

−3iA0

2
,m =

−A0

2
, c =

1

8
A0(−4k + 3A2

0),
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we have

u2(x, y, t) =
3

2
iA0sech[ny −

A0

2
x− 1

8
A0(−4k + 3A2

0)t]−
1

2
A0[ny −

A0

2
x

−1

8
A0(−4k + 3A2

0)t] +
3

2
A0tanh[ny −

A0

2
x− 1

8
A0(−4k + 3A2

0)t]. (3.9)

Figure 4. The 3D surfaces of Eq. (3.9) under the values A0 = 2,
n = −1, k = 3, y = 0.4, −12 < x < 12,−12 < t < 12.

Figure 5. The contour surfaces of Eq. (3.9) under the values A0 =
2, n = −1, k = 3, y = 0.4, −10 < x < 10,−10 < t < 10.
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Figure 6. The 2D surfaces of Eq. (3.9) under the values A0 = 2,
n = −1, k = 3, y = 0.4, t = 0.85, −12 < x < 12.

Case 3: If

A0 =
2iB2

3
, A1 = 0, A2 = −iB2, B1 = 0,m =

−iB2

3
, c =

−1

9
iB2(3k +B2

2),

we obtain

u3(x, y, t) = −sech[ny − 1

3
iB2x+

1

9
iB2(3k +B2

2)t]B2 −
1

3
iB2[ny −

1

3
iB2x

+
1

9
iB2(3k +B2

2)t] + iB2tanh[ny −
1

3
iB2x+

1

9
iB2(3k +B2

2)t]. (3.10)

Figure 7. The 3D surfaces of Eq. (3.10) under the values B2 = 2,
n = −1, k = 3, y = −0.2, −6 < x < 6,−6 < t < 6.
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Figure 8. The contour surfaces of Eq. (3.10) under the values B2 =
2, n = −1, k = 3, y = −0.2, −180 < x < 180,−180 < t < 180.

Figure 9. The 2D surfaces of Eq. (3.10) under the values B2 = 2,
n = −1, k = 3, y = −0.2, t = 0.85, −120 < x < 120.

Case-4: Considered into Eq. (3.5) as
A0 = −3m,A1 = 0, A2 = 3m,B1 = 0, B2 = −3im, c = m(k + 3m2),

we find the singular soliton solution

u4(x, y, t) = 3imsech[m(k+3m2)t−mx−ny]+3mtanh[m(k+3m2)t−mx−ny].

(3.11)

4. Conclusion

In this manuscript, we have successfully applied the powerful SGEM to extract the
complex solutions to the extended shallow water wave model with (2+1)-dimensional.
We have found firstly new complex mixed-type optical soliton solutions to this equa-
tion. 3D surfaces can be seen in Figures (1), (4), (7) and (10), and contour graphs
may also be viewed in Figures (2), (5) and (8) and 2D surfaces can be observed in the
Figures (3), (6), (9) and (11) in this study, under the choice of suitable parameters.
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Figure 10. The 3D surfaces of Eq.(3.11) under the values m = 1,
n = 2, k = 3, y = 0.2, −6 < x < 6, −6 < t < 6.

Figure 11. The 2D surfaces of Eq. (3.11) under the values m = 1,
n = 2, k = 3, y = 0.2, t = 0.85, −1 < x < 12.

Moreover, we have compared our results with some of the existing results in the
literature. Periodic and lump wave structures to this equation have been obtained
with the aid of Hirota bilinear form in [40]. We observed that our results are entirely
newly constructed in the sense of complex structures. Furthermore, the obtained
results, in this study, have some important physical meaning which is related to the
studied models, for example, it has been presented that the hyperbolic tangent arises
in the calculation of magnetic moment and rapidity of special relativity, the hyperbolic
secant arises in the profile of a laminar jet in [48]. It can be therefore seen that our
results may also be useful in explaining the physical behavior of the studied models
and many other nonlinear models arising in the field of nonlinear science. What is
more and more interestingly, it has been observed that soliton waves of the solutions
found in this paper remain unchanged. To the best of our knowledge, the application
of SGEM has not applied to the model previously. should be numbered with roman
numerals in the order of appearance. Every table must have a caption, which should
be typed above the table.
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