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Abstract One of the schemes to find the optimal shape parameter and optimal number of

points in the radial basis function (RBF) methods is to apply the stochastic arith-
metic (SA) in place of the common floating-point arithmetic (FPA). The main pur-

pose of this work is to introduce a reliable approach based on this new arithmetic to

compute the local optimal shape parameter and number of points in multiquadric
and Gaussian RBF-meshless methods for solving differential equations, in the it-

erative process. To this end, the CESTAC method is applied. Also, in order to
implement the proposed algorithms, the CADNA library is performed. The exam-

ples illustrate the efficiency and importance of using this library to validate the

results.
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function (RBF).
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1. Introduction

Consider a general class of boundary or initial value problems under a domain Ω
with boundary ∂Ω, and linear differential operators L and B:

Lu = f, x ∈ Ω ⊂ Rd; Bu|∂Ω = g. (1.1)

In recent years, some authors worked on finding the optimal shape parameter and
optimal number of points, in solving differential equations based on RBF like Bay-
ona et al. in [8, 10, 11], Afiatdoust, Esmaeilbeigi in [5] and Uddin in [39]. Also,
Sarra and Sturgill [30] presented a random variable shape parameter ε strategy and
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applied it for interpolation and two-dimensional linear elliptic boundary value prob-
lems. Kansa [25, 26] presented an exponential variable shape parameter ε strategy
that uses a different value of the shape parameter at each center. Moreover, Luh
[28, 29] worked on finding optimal shape parameter in the interpolation functions. In
[26, 37], exponential variable shape parameters εj are considered as below:

εj =

(
ε2min

(
ε2max

ε2min

)(j−1)/(N−1)
)1/2

, j = 1, 2, ..., N.

In [32, 37], the random variable shape parameters εj are recommended as follows:

εj = εmin + (εmax − εmin)× rand(1, N),

the rand is the MATLAB functions that return uniformly distributed pseudo-random
numbers on the unit interval. In [37], the trigonometric variable shape parameters εj
strategy is proposed as

εj = εmin + (εmax − εmin)× sin(j), j = 1, 2, ..., N.

In these three strategies mentioned exponential, random and trigonometric, according
to what has been indicated in Ref. [37], εmin = 1/

√
N and εmax = 3/

√
N have been

considered.
In this paper, we deal with finding reasonable variable shape parameters by taking

a different approach. The purpose is to use a search algorithm using SA (stochastic
arithmetic) to determine optimal variable shape parameters εj .

In the FPA (floating-point arithmetic), usually the proposed algorithms of RBF
are implemented by a package like Matlab, Mathematica or Maple and in most cases a
fixed value is considered for shape parameter or number of points. Also, the termina-
tion criterion depends on a positive number like eps as the accuracy. The FPA is not
able to rely on the results and detect any instabilities during the run of the program.
So, the final results may not be accurate or the number of iterations may increase
without increasing the accuracy of the results. In this case, because of the round-
off error propagation, the computer may not be able to improve the accuracy of the
computed solution. Therefore, the validation of the computed results is important.

In Eq. (1.1), the meshless points {xk}Nk=1 ⊂ Ω and in two-dimensional {(xk, yk)}Nk=1

is selected based on Gaussian (GA) as ψ(r) = e−ε
2r2 or multiquadrics (MQ) as

ψ(r) =
√
ε2 + r2 RBF method, where r is the distance between the grid points.

These functions depend on ε, known as the shape parameter, that has an important
role in approximation theory using RBFs.

This study provides new insights into RBF-meshless method. The main issues are:
a) To obtain the optimal computed solution of differential equations in a reliable
scheme,
b) To determine the optimal shape parameter ε by changing the number of nodal
points N ,
c) To determine the optimal number of nodal points N by changing the shape pa-
rameter ε.
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In order to gain access to these goals and validate the numerical results, as well as,
control round-off errors, we use the CESTAC1 method [41, 42] and CADNA2 library
[16] according to the rules of the SA. In [1, 13, 18, 20, 27], the researchers worked on
the SA, the CESTAC method and the CADNA library.

In this essay, we present a strategy to control the shape parameter in the RBF for
solving the differential equations, also we determine the optimal number of points,
and find the suitable approximate solution of the differential equation at the nodal
points so that the local truncation errors are minimized. It is shown that the CESTAC
method and the CADNA library[16, 23] are efficient tools to validate the results and
get the optimal values. The essay has been organised in the following way. In section
2, a brief description of the CESTAC method is reminded. In section 3, we explain
the main idea which offers a reliable scheme based on the SA in discrete case and
the CESTAC method to solve a differential equation via the RBF-meshless method.
In this case, some algorithms are presented to implement by means of the CADNA
library. In section 4, some numerical examples are solved to illustrate the importance
of using the SA to validate the results of the proposed algorithms.

2. Preliminaries

In this section, the CESTAC method is reminded. The main tasks of the CESTAC
method are defined in[34, 40, 41, 42, 43, 44] which are:

• simultaneously implementation the same code M times with a various round-
off error diffusion for each run;

• evaluating the common part of these results and to propound that this part
is the same as the accurate result.

In practice, these different round-off error propagations are obtained in using random
rounding mode. In fact, each result e of a FPA operation corresponding to a real
number E is always bounded by two values E− and E+, each of them being so
representative of the accurate result. The random rounding consists at the level
of each FPA operation or assignment to choose as result randomly with an equal
probability either E− or E+. Then when the same code is performed, M times with
a computer using this random rounding, M results Ei, i = 1, ...,M, are obtained. It
has been proved in that, under some assumptions, these M results belong to a quasi-
Gaussian distribution focused on the accurate result e. So, as a matter of fact, to take
into view the average value Eave of the Ei as the calculated result, and using Student
test, it is possible to obtain a confidence interval of E with a probability (1− θ) and
then to evaluate the estimate number of exact significant digits of E by

CEave = log10(

√
M |Eave|
τθs

), (2.1)

where Eave = (1/M)
∑M
i=1Ei, and s2 =

1

M − 1

∑M
i=1(Ei − Eave)2.

s is the standard deviation and τθ is the value of the Student distribution for M − 1

1Control et estimation stochastique des arrondis de calculs.
2Control of Accuracy and Debugging for Numerical Applications
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degrees of freedom and a probability level 1 − θ. In practice M = 3, θ = 0.05 and
then τθ = 4.4303.

Definition 2.1. Each result presented by the CESTAC method is an informatical
zero shown with @.0 iff one of the following two conditions be met:

1) Ei = 0, i = 1, 2, ...,M. 2) CEave
≤ 0.

In this case, Eave has no significant digit.

Definition 2.2. Let P and Q be M -samples provided by the CESTAC method,
discrete stochastic equality denoted by s= is defined as follows:
Ps=Q if P −Q = @.0.

The Discrete Stochastic Arithmetic (DSA) is the association of the CESTAC
method, the concept of computational zero and the discrete stochastic relations.
Based on the DSA, it is possible to control the run of a scientific code, to indi-
cate the numerical instabilities and the validation of results in a program. The two
main features of the CESTAC method include:

• The random rounding, which contains in fathering E− and E+ and in choosing
randomly one of the two.

• The manner to perform the M runs of a code.

With IEEE arithmetic and the possibilities of ADA, C++, and Fortran to create
new structures and to overload the operators it is easy to implement the CESTAC
method.

It is absolutely necessary to detect, during the run of a code, the emergence of
@.0 for controlling the validity of the CESTAC method. To achieve this it suffices
to use the synchronous implementation which consists of performing each arithmetic
operation M times with the random rounding before performing the next. Thus, for
each numerical result we have M samples, from which the number of the exact signifi-
cant digits of the average value, considered as the computed result, is estimated. The
applying of the CESTAC method in a scientific program has the following advantages:

(1) The accuracy of any numerical result is estimated, during the performance of
a code.

(2) The numerical instabilities are detected and the branching is checked.
(3) Unnecessary iterations are eliminated which the FPA is not able to distin-

guish them. In some cases, the termination criterion of iterative methods is
not suitable so that the implementation of the algorithm is continued without
improvement in the accuracy of the result. In the SA, instead of the termi-
nation criterion, a criterion that directly reflects the mathematical condition,
is replaced, that must be satisfied by the solution.

(4) It is able to find the optimal step of the iterative methods, which after this
step, the accuracy of the result does not increase or maybe decrease, because
of the rounding error accumulation.

(5) It is an effective and powerful tool that helps us to achieve the validation of
scientific programs and gives them reliability.
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3. Main idea

Let the function u in Eq.(1.1) is approximated by:

u ' w =

N∑
k=1

λkψk, (3.1)

where λk’s are unknown coefficients[7]. We consider the MQ-RBF and GA-RBF

functions. The function ψ represents a radial basis function, where ψk =
√
ε2 + r2

k

or ψk = e−ε
2r2k , that in one-dimensional r2

k = (x − xk)2 and in the two-dimensional
r2
k = (x − xk)2 + (y − yk)2. The set of N distinct points are divided into two parts.

Assume that there are NI centers in the interior of the domain Ω/∂Ω and NB centers
on the boundary ∂Ω. For the interior centers and fixed point x∗ ∈ Rd, we apply the
operator L to the RBF interpolation as

Lu(x∗i ) =

N∑
k=1

λkLψk(x∗i ) = f(x∗i ), i = 1, 2, ..., NI ,

for the boundary centers, we have

Bu(x∗i ) =

N∑
k=1

λkBψk(x∗i ) = g(x∗i ), i = NI + 1, ..., N.

An interpolation matrix can be expressed as[
Lψ
Bψ

] [
λ
]

=

[
f
g

]
=⇒ Aλ = q. (3.2)

Since the matrix A is the nonsingular matrix [7], therefore we use the LU factorization
to solve the system (3.2) and obtain λk unknown coefficients. Also, the condition
number of matrix A is computed on a given norm via the following relation:

Cond(A) = ‖A‖
∥∥A−1

∥∥ . (3.3)

Let meshless points Ξk = {xk}Nk=1 or Ξk = {(xk, yk)}Nk=1 be a given set of distinct
points in domain Ω in Rd, then the infinite norm error(τ), the root mean square
(RMS) error and the relative root mean square(RES) error are as follows:

τ = ‖u− w‖∞ ' max1≤k≤N |u(Ξk)− w(Ξk)| ,

RMS(u,w) =

√
1

N

∑N
k=1 (u(Ξk)− w(Ξk))

2
,

RES(u,w) =

∑N
k=1 (u(Ξk)− w(Ξk))

2∑N
k=1 (u(Ξk))

2
.

(3.4)

where w is defined by (3.1).
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3.1. Algorithms in CADNA library. The CADNA library is a tool to implement
the CESTAC method automatically. The first goal of this library is the estimation
of the accuracy of each computed result. The CADNA detects numerical instabilities
(informatical zero) during the run of the program[23]. The CADNA works on Fortran
or C + + codes on the Linux operating system[16, 17]. When a result is a stochastic
zero(i.e. is insignificant), the symbol @.0 is printed. For more details about this
library we refer the reader to ” http://www-pequan.lip6.fr/cadna ”.

The following algorithms are proposed to solve a differential equation via RBF-
meshless method based on the SA. Suppose wi, wi−1 are the approximate values of u
in two successive iterations obtained from the MQ-RBF and the GA-RBF method at
the meshless points Ξk = {xk}Nk=1 or Ξk = {(xk, yk)}Nk=1. If the MQ-RBF or GA-RBF
method is used in order to estimate u(Ξk) then, for suitable choice of N and ε, the
number of common significant digits between wi(Ξk) and wi−1(Ξk) are almost equal
to the number of common significant digits between u(Ξk) and wi(Ξk). Therefore, if
the CESTAC method is applied then, the computations of the sequence wi(Ξk)’s are
stopped when for an index like Nopt, εopt,

∥∥wi − wi−1
∥∥
∞ = @.0 or RMS(wi, wi−1) =

@.0 or RES(wi, wi−1) = @.0. Thus the termination criterion, we consider the infinity
error norm, RMS and RES to be an informatical zero denoted by @.0. The outputs
of all algorithms are N , ε, wi(Ξk),

∥∥wi − wi−1
∥∥
∞, RMS, RES and Cond(A).

In the following algorithm, ε considered as a constant value and in an iterative process
by increasing N , the Nopt is obtained.

Algorithm 3.1. (finding the Nopt with {Ξk}Nk=1 and fixed shape parameter)
step1-Let i = 1, choose a fixed ε and arbitrary N

step2- Compute wi(Ξk), k = 1, 2, ..., N based on (3.1)

step3- If
∥∥wi − wi−1

∥∥
∞ = @.0 (or RMS(wi, wi−1) = @.0 or RES(wi, wi−1) = @.0)

on bases (3.4)) then stop

step4- Else N = N + 1, i = i+ 1 and goto step 2.

step5- EndIf.

In two following algorithms, N is fixed and in an iterative process by changing ε,
the εopt is obtained.

Algorithm 3.2. (finding the εopt for MQ-RBF with the {Ξk}Nk=1 and fixed N)
step1- Let i = 1, choose a fixed N, 0 < δ � 1 and arbitrary ε

step2- Compute wi(Ξk), k = 1, 2, ..., N based on (3.1)

step3- If
∥∥wi − wi−1

∥∥
∞ = @.0 (or RMS(wi, wi−1) = @.0 or RES(wi, wi−1) = @.0)

on bases (3.4)) then stop

step4- Else ε = ε+ δ, i = i+ 1 and goto step 2.

step5- EndIf.

Algorithm 3.3. (finding the εopt for GA-RBF with the {Ξk}Nk=1)
step1- Let i = 1, choose a fixed N, 0 < δ � 1 and arbitrary small ε

step2- Compute wi(Ξk), k = 1, 2, ..., N based on (3.1)

step3- If
∥∥wi − wi−1

∥∥
∞ = @.0 (or RMS(wi, wi−1) = @.0 or RES(wi, wi−1) = @.0)

on bases (3.4) then stop
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step4- Else ε = ε− δ, i = i+ 1 and goto step 2.

step5- EndIf.

In the step 1 of algorithms 2 and 3, the initial choice ε is optional.
Note that for calculating approximate solution at the arbitrary point like ξ ∈ Ω or
(ξ, η) in two-dimensional , we use the stopping criterion

∣∣wi(ξ)− wi−1(ξ)
∣∣ = @.0 or∣∣wi((ξ, η))− wi−1((ξ, η))

∣∣ = @.0 , in two successive iterations.

4. Numerical Examples

In this section, three sample differential equations are considered to be solved by
the RBF-meshless method based on the algorithms 1, 2 and 3. All the numerical
experiments have been computed in double precision by C++ codes and CADNA
library in Linux machine.

Examples 4.1. Consider the steady convection-diffusion problem

ux − uxx = π2 sin(πx) + π cos(πx), x ∈ (0, 1),
u(0) = 0, u(1) = 1.

(4.1)

The exact solution of Eq. (4.1) is u(x) = sin(πx) +
ex − 1

e− 1
.

This problem was proposed and solved in [8, 10, 11].
To solve Eq.(4.1) by RBF-meshless method, the following meshless points are chosen:

xk = sin

(
(k − 1)π

2(N − 1)

)
, k = 1, 2, ..., N. (4.2)

The main goal is to solve Eq. (4.1) and to find the optimal shape parameter and the
optimal number of points. As far as the choice of the optimal shape parameter depends
on the node points, so first we examine the numerical results at the point x∗ like 0.5,
then we consider the general case based on infinite norm error, RMS error, RES error.
As seen in Figure 1, with successive implementation of algorithm 1, optimal number of
the points in MQ-RBF method is obtained with range 0.1 < ε < 6 for solving Eq.(4.1)
at the point x = 0.5. Truncation error in the case ε = 0.1 is 0.15E − 003 and in the
case ε = 6 is 0.3E − 002, that if ε is selected outside of this range, truncation error
gradually increases. In best situation, by choosing Nopt = 21, ε = 0.52 truncation
error in N = 20 is 0.5E− 006 and by choosing Nopt = 11, ε = 2.02 truncation error in
N = 10 is 0.7E−006. Therefore, the best range for ε in equation (4.1) is 0.1 < |ε| < 6.
So, by implementing algorithm 1 alternatively, the optimal numbers of the points with
range 0.2 < ε < 7 in solving Eq.(4.1) by using GA-RBF method at the point x = 0.5
is obtained. The results are shown in Figure 2. Truncation error in the case ε = 0.2
is 0.479E − 002 and in the case ε = 7 is 0.2E − 004. But in the outside of this range,
truncation error gradually increases or numerical instability occurs. For example, in
the case N = 7, ε = 0.14, according to Table 1 the notation @.0 is displayed in the
column u(0.5), which means the numerical instability.
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Figure 1. x = 0.5, MQ-RBF

Figure 2. x = 0.5, GA-RBF

Table 1. Numerical results of Example 4.1

GA-RBF, x = 0.5, ε = 0.14
N u(0.5)

∣∣u(0.5)− wi(0.5)
∣∣ ∣∣wi(0.5)− wi−1(0.5)

∣∣ Cond(A)

5 0.13819E+001 0.439E-002 0.13819E+001 0.87644339E+010
6 0.1376E+001 0.9E-003 0.5E-002 0.17593E+014
7 @.0 @.0 @.0 0.50E+017

In the GA-RBF method, by choosing N = 15, δ = 0.03 and applying algorithm 3,
we find the optimal shape parameter εopt = 2.02 and in the MQ-RBF, by choosing
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N = 23, δ = 0.03 and applying algorithm 2, it is calculated εopt = 0.36. In order to
compare these two methods, the values τ , RMS and RES are shown in Figure 3 and
Figure 4.

Figure 3

(a) εopt=0.36, N=23, MQ (b) εopt=2.02, N=15, GA

The condition numbers of the matrix A product of the MQ-RBF and GA-RBF
methods are shown in Figure 5 and Figure 5.

Figure 4

(a) εopt=0.36, N=23, MQ (b) εopt=2.02, N=15, GA

The numerical results of Example 1 for MQ-RBF, is given in Table 2. In this table,
by choosing fixed ε = 0.61 optimal number of the point Nopt = 20 is obtained. In
the last column, condition number of the matrix A is shown as Cond(A) = @.0 at
optimal step. This means that, by increasing N , condition number of matrix A is
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Table 2. Numerical results of Example 4.1

MQ-RBF, x = 0.5, ε = 0.61

N u(0.5)
∣∣u(0.5)− wi(0.5)

∣∣ ∣∣wi(0.5)− wi−1(0.5)
∣∣ Cond(A)

5 0.1360100505853E+001 0.17440162944E-001 - 0.1045687714775E+004
6 0.1338901684992E+001 0.38638983805E-001 0.21198820860E-001 0.1174472550529E+005
7 0.1377300046137E+001 0.240622660E-003 0.38398361144E-001 0.237171865855E+005
8 0.137766960951E+001 0.12894071E-003 0.36956337E-003 0.24046608672E+006
9 0.137762843490E+001 0.87766104E-004 0.41174609E-004 0.81758887703E+006
...

...
...

...
...

15 0.137751896E+001 0.2169E-004 0.1068E-004 0.16968E+012
16 0.137752511E+001 0.1555E-004 0.614E-005 0.1837E+013
17 0.13775309E+001 0.97E-005 0.57E-005 0.132E+014
18 0.1377533E+001 0.72E-005 0.25E-005 0.14E+015
19 0.1377535E+001 0.4E-005 0.2E-005 0.11E+016
20 0.137753E+001 @.0 @.0 @.0

Table 3. Numerical results of Example 4.1

MQ-RBF, x = 0.5, N = 20
ε u(0.5) |u(0.5)− wi(0.5)| |wi(0.5)− wi−1(0.5)| Cond(A)

0.10 0.1377608600E+001 - - 0.1095701648E+008
0.13 0.137516487E+001 0.2375798E-002 0.2443729E-002 0.29869417032E+008
0.16 0.137340314E+001 0.4137525E-002 0.176172E-002 0.8092274576E+008
...

...
...

...
...

0.37 0.1377703E+001 0.162E-003 0.309E-003 0.1182E+013
0.40 0.1377608E+001 0.67E-004 0.95E-004 0.3724E+013
0.43 0.1377570E+001 0.29E-004 0.37E-004 0.1232E+014
0.46 0.1377552E+001 0.12E-004 0.17E-004 0.407E+014
0.49 0.1377544E+001 0.3E-005 0.86E-005 0.13E+015
0.52 0.137754E+001 0.28E-005 0.4E-005 0.42E+015
0.55 0.13775379E+001 0.26E-005 0.2E-005 0.13E+016
0.58 0.1377537E+001 0.35E-005 0.8E-006 0.4E+016
0.61 0.137753E+001 0.3E-005 @.0 0.1E+017

insignificant.
By fixing the number N = 20, according to Table 3 the optimal shape parameter
εopt = 0.61 is obtained.
Numerical results of the Eq. (4.1) by using GA-RBF meshless method at the point
x = 0.5 by the implementing algorithms 2, 3, with δ = 0.03 are shown in the Tables
4 and 5 respectively.

In the present method, the optimal shape parameter is obtained from an iterative
process. According to the type of nodal points in the choice of the shape parameter,
the method presented in [8, 10, 11] and the present approach is completely different.
Therefore, the approximate solution is compared with the exact solution. We can be
see a comparison between the exact solution and approximate solutions in Figure 6,
that for MQ-RBF N = 23, εopt = 0.36 and in the GA-RBF N = 15, εopt = 2.02 is
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Table 4. Numerical results of Example 4.1

GA-RBF, x = 0.5, N = 15
ε u(0.5)

∣∣u− wi∣∣ ∣∣wi − wi−1
∣∣ Cond(A)

3.00 0.137770686E+001 0.16619E-003 - 0.88406E+012
2.97 0.13776911E+001 0.1504E-003 0.157E-004 0.1109E+013
2.94 0.137767659E+001 0.13592E-003 0.145E-004 0.13978E+013
...

...
...

...
...

2.73 0.13776030E+001 0.6235E-004 0.788E-005 0.76877E+013
2.70 0.13775958E+001 0.5520E-004 0.715E-005 0.994E+013
2.67 0.137758940E+001 0.4873E-004 0.646E-005 0.1290E+014
...

...
...

...
...

2.52 0.13775656E+001 0.249E-004 0.37E-005 0.505E+014
2.49 0.13775622E+001 0.2161E-004 0.33E-005 0.673E+014
2.46 0.137755931E+001 0.1865E-004 .296E-005 0.901E+014
...

...
...

...
...

2.22 0.13775456E+001 0.497E-005 0.98E-006 0.1E+016
2.19 0.13775448E+001 0.413E-005 0.838E-006 0.1E+016
2.16 0.13775440E+001 0.34E-005 0.72E-006 0.2E+016
2.13 0.1377543E+001 0.28E-005 0.5E-006 0.2E+016
2.10 0.1377542E+001 0.20E-005 0.5E-006 0.4E+016
2.07 0.1377542E+001 0.18E-005 0.4E-006 0.5E+016
2.04 0.1377542E+001 0.1E-005 @.0 0.8E+016

Table 5. Numerical results of Example 4.1

GA-RBF, x = 0.5, ε = 2.04
N u(0.5)

∣∣u(0.5)− wi(0.5)
∣∣ ∣∣wi(0.5)− wi−1(0.5)

∣∣ Cond(A)

5 0.1395488710116E+001 0.17948041317E-001 - 0.1872125243342E+004
6 0.1336191141684E+001 0.413495271131E-001 0.592975684311E-001 0.5771636338915E+004
7 0.1384711165077E+001 0.71704962795E-002 0.48520023392E-001 0.215714784845E+005
8 0.138017982618E+001 0.263915738E-002 0.4531338896E-002 0.259176319219E+006
9 0.137882831546E+001 0.128764667E-002 0.135151071E-002 0.3439990104E+007
10 0.13778782059E+001 0.3375371E-003 0.95010954E-003 0.87175544E+008
11 0.1377669063E+001 0.128394E-003 0.2091424E-003 0.2574423E+010
12 0.137757363E+001 0.32969E-004 0.95425E-004 0.914767E+011
13 0.137755532E+001 0.1465E-004 0.1831E-004 0.3727E+013
14 0.1377543E+001 0.2E-005 0.12E-004 0.170E+015
15 0.1377542E+001 0.1E-005 0.1E-005 0.8E+016
16 0.137754E+001 @.0 @.0 @.0

selected.

Examples 4.2. We consider a two-dimensional Poisson problem, defined by:[26, 31]

∇2u(x, y) = (λ2 + µ2)eλx+µy, (x, y) ∈ Ω = [0, 1],
u(x, y)|∂Ω = g(x, y), (x, y) ∈ ∂Ω,

(4.3)

where ∇ is the Laplace operator. The exact solution of Eq. (4.3) is as follows:

u(x, y) = eλx+µy.
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Figure 5. A comparison of exact and approximate solutions (Blue
points : GA-RBF, N = 15, ε = 2.02 Red points : MQ-RBF, N =
23, ε = 0.36)

For boundary conditions have

g(0, yi) = eµyi , i = 1, 2, ..., N1,
g(1, yi) = eλ+µyi , i = 1, 2, ..., N2,
g(xi, 0) = eλxi , i = 1, 2, ..., N3,
g(xi, 1) = eλxi+µ, i = 1, 2, ..., N4,

where NB = N1 +N2 +N3 +N4 total number of boundary points.
In solving of Eq. (4.3), the NB = 20 boundary points are used. Also, we present
irregular grid points {(xk, yk)}Nk=1 in using the RBF-meshless method. Irregular grid
points are created by code rand() in the C++. Number N = 48 irregular grid points
for MQ-RBF method are selected as illustrated in Figure 7.
In Figure 8, when λ = 1, µ = 2, we can see a comparison of the exact solution and

approximation solutions, the numerical results with optimal choice N = 48, ε = 1.11
for MQ-RBF and N = 28, ε = 0.68 for GA-RBF is obtained by the CESTAC method.
As well as for comparison, the method proposed in [31] under a domain the unit circle
with double precision, for N = 20, 30, 60 optimal shape parameters and RMS errors
are obtained ε = 0.035, 0.1, 0.2 and 3.1E − 2, 2.9E − 3, 4.8E − 4, respectively. By
repeating the execution of algorithm 1 and selecting ε in the interval 0.75 < |ε| < 2.9,
optimal number of the points is calculated by using MQ-RBF meshless method at the
point (0.5, 1). These results can be seen in Figure 9. In the interval 0.75 < |ε| < 2.9,
truncation error in the lowest and highest values are 0.6E − 006 and 0.1E − 002,
respectively. In outside of this interval, the error is increasing gradually. Of the best
choices are Nopt = 63, ε = 0.73 and Nopt = 27, ε = 1.65 that truncation error is
elmost 0.6E − 006. When ε = 0.72, N = 122 numerical instability happens, that in
the second column of the Table 6 it can be seen with the symbol @.0. To solve the
Eq. (4.3) by GA-RBF meshless method at the point (0.5, 1), when 0.4 < |ε| < 1.94
optimal number of points is obtained by successive implementation of algorithm 1.
These results can be seen in Figure 10. For example, in the case ε = 2.32, N = 100
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Figure 6. N=48, irregular grid

Figure 7. A comparison of exact and approximate solutions (Red
points: MQ-RBF, N=48, ε = 1.11. Blue points: GA-RBF, N=28,
ε = 0.68.)

as shown in Table 7, numerical instability is observed. The curve of the errors for
MQ-RBF method is plotted in Figure 11. By implementation of the algorithm 2 with
δ = 0.03 and the fixed number N = 48, the optimal shape parameter εopt = 1.8 is
obtained. Also, the errors of the GA-RBF method, is shown in Figure 11 and with
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Figure 8. x = 0.5, y = 1, MQ-RBF

Figure 9. x = 0.5, y = 1, GA-RBF

fixed number N = 28, the optimal shape parameter εopt = 0.68 is obtained. So, in
Figures 12 and 12, condition number of the matrix A can be observed. It can be seen
in Table 8, by algorithm 1, the numerical results of the Eq.(4.3) by using MQ-RBF
meshless method at the point (0.5, 1) when ε = 1.8, the optimal number of point
Nopt = 29 is obtained. Also, in Table 9, The number of points N = 48 is fixed and
the optimal value of εopt = 1.11 is obtained by using algorithm 2 with δ = 0.03.

By applying GA-RBF meshless method to solve the Eq. (4.3) at the point (0.5, 1),
the numerical results can be seen in Tables 10 and 11. In this way, by the algorithms
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Table 6. Numerical results of Example 4.2

MQ-RBF, λ = 1, µ = 2, δ = 0.03, N = 122

ε u(0.5, 1)
∣∣u− wi∣∣ ∣∣wi − wi−1

∣∣ Cond(A)

0.60 0.1217804E+002 0.4449E-002 - 0.22775E+014
0.63 0.1218256E+002 0.6E-004 0.451E-002 0.6794E+014
0.66 0.122034E+002 0.209E-001 0.208E-001 0.2407E+015
0.69 0.1228E+002 0.10E+000 0.81E-001 0.120E+016
0.72 @.0 @.0 @.0 @.0

Table 7. Numerical results of Example 4.2

GA-RBF, λ = 1, µ = 2, ε = 2.32
N u(0.5, 1)

∣∣u− wi∣∣ ∣∣wi − wi−1
∣∣ Cond(A)

21 0.130629871E+002 0.88049322 - 0.17883362E+010
22 0.121714675E+002 0.1102645E-001 0.89151968 0.46001900E+009
...

...
...

...
...

98 0.12245E+002 0.629E-001 0.682E-001 0.3935E+015
99 0.11E+002 0.1E+001 0.1E+001 0.1E+017
100 @.0 @.0 @.0 @.0

Table 8. Numerical results of Example 4.2

MQ-RBF,(x, y) = (0.5, 1), λ = 1, µ = 2, ε = 1.8

N u(0.5, 1)
∣∣u− wi∣∣ ∣∣wi − wi−1

∣∣ Cond(A)

21 0.1204E+002 0.141E+000 - 0.28E+015
22 0.121907E+002 0.829E-002 0.150E+000 0.807E+014
...

...
...

...
...

25 0.1218386E+002 0.136E-002 0.2685E-002 0.1306E+014
26 0.12182515E+002 0.21E-004 0.134E-002 0.83E+015
27 0.12182487E+002 0.59E-005 0.27E-004 0.7662E+014
28 0.12182479E+002 0.14E-004 0.88E-005 0.187E+015
29 0.121824E+002 @.0 @.0 0.15E+016

Table 9. Numerical results of Example 4.2

MQ-RBF, (x, y) = (0.5, 1), λ = 1, µ = 2, δ = 0.03, N = 48
ε u(0.5, 1)

∣∣u− wi∣∣ ∣∣wi − wi−1
∣∣ Cond(A)

0.30 0.1217726748E+002 0.5226479E-002 - 0.3707078E+011
0.33 0.1217397509E+002 0.8518864E-002 0.329238E-002 0.560850511E+010
...

...
...

...
...

0.78 0.12182070E+002 0.423E-003 0.558E-003 0.31543E+013
0.81 0.12182229E+002 0.264E-003 0.159E-003 0.295645E+013
...

...
...

...
...

0.99 0.1218243E+002 0.56E-004 0.1E-004 0.9225E+013
1.02 0.1218244E+002 0.46E-004 0.9E-005 0.1208E+014
1.05 0.1218245E+002 0.38E-004 0.7E-005 0.1589E+014
1.08 0.1218246E+002 0.3E-004 0.6E-005 0.2093E+014
1.11 0.1218246E+002 0.2E-004 @.0 0.2759E+014
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Figure 10

(a) εopt = 1.8, N=48, MQ (b) εopt = 0.68, N=28, GA

Figure 11

(a) εopt = 1.8, N=48, MQ (b) εopt = 0.68, N=28, GA

1 and 3, when ε is a constant value, the optimal Nopt is obtained and when N is
considered to be fixed the optimal εopt is found.

Examples 4.3. Consider the cubic Duffing oscillator equation[36, 38]

d2y

dt2
+ ky + σy3 = |k − 1| cost, 0 ≤ t ≤ T,

y(0) = 0, y′(0) = 0.
(4.4)

The solution depends on the two dimensionless parameters k and σ.
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Table 10. Numerical results of Example 4.2

GA-RBF, (x, y) = (0.5, 1), λ = 1, µ = 2, δ = 0.03, N = 28
ε u(0.5, 1)

∣∣u− wi∣∣ ∣∣wi − wi−1
∣∣ Cond(A)

3.00 0.121880666463E+002 0.557268566E-002 - 0.223352853E+009
2.97 0.121863762037E+002 0.388224302E-002 0.16904426E-002 0.229478285E+009
...

...
...

...
...

2.40 0.121817150944E+002 0.77886628E-003 0.5445592E-004 0.136622222E+010
2.37 0.121817675503E+002 0.72641038E-003 0.5245590E-004 0.155101875E+010
...

...
...

...
...

1.56 0.121823916335E+002 0.1023272E-003 0.81361E-005 0.1130702E+012
1.53 0.12182399279E+002 0.946816E-004 0.76455E-005 0.138623E+012
...

...
...

...
...

0.75 0.121824885E+002 0.54E-005 0.1E-005 0.450E+015
0.72 0.121824893E+002 0.45E-005 0.8E-006 0.72E+015
0.69 0.12182490E+002 0.37E-005 0.8E-006 0.11E+016
0.66 0.12182490E+002 0.3E-005 0.7E-006 0.19E+016
0.63 0.12182491E+002 0.2E-005 @.0 0.3E+016

Table 11. Numerical results of Example 4.2

GA-RBF, (x, y) = (0.5, 1), λ = 1, µ = 2, ε = 0.68
N u(0.5, 1)

∣∣u− wi∣∣ ∣∣wi − wi−1
∣∣ Cond(A)

21 0.121757E+002 0.674E-002 - 0.641E+014
22 0.12183924E+002 0.1430E-002 0.817E-002 0.703E+014
...

...
...

...
...

25 0.12182720E+002 0.226E-003 0.498E-003 0.5329E+014
26 0.12182489E+002 0.46E-005 0.230E-003 0.14E+016
27 0.1218249E+002 0.1E-005 0.2E-005 0.148E+015
28 0.12182490E+002 0.35E-005 @.0 0.14E+016

To solve Eq.(4.4) by RBF-meshless method, the following meshless points are chosen:

tk = sin

(
(k − 1)π

2(N − 1)

)
, k = 1, 2, ..., N. (4.5)

First for case k = 30, σ = 0 and then cases k = 30, σ = 0.1 and k = 2, σ = 0.1, we
illustrate this example.

In the case k = 30, σ = 0, by using RBF-meshless methods and applying algorithms 2
and 3, numerical results of the Eq. (4.4) for MQ-RBF method in N = 18, εopt = 0.76
and GA-RBF method inN = 12, εopt = 1.25 at t ∈ [0, 1] are shown in Table 12. Also in
this table, the comparison of the present methods with differential transform method
(DTM) [36] and pade approximation method[36] are represented. In the MQ-RBF
method, by choosing N = 18, δ = 0.03 and applying algorithm 2, we find the optimal
shape parameter εopt = 0.75 and in the GA-RBF, by choosing N = 12, δ = 0.03 and
applying algorithm 3, it is calculated εopt = 1.25. In order to compare these two
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Table 12. Numerical results of Example 4.3

Comparison of MQ, GA, DTM and P[5/4], k = 30, σ = 0

t MQ GA DTM P [5/4]

0.1 0.1412 0.141291 0.1412914651 0.1412914643
0.2 0.5223 0.522414 0.5224158288 0.5224149658
0.3 1.0275 1.027643 1.027644677 1.027600040
0.4 1.5020 1.502171 1.502172577 1.501490977
0.5 1.7974 1.797478 1.797479057 1.792239670
0.6 1.81485 1.814876 1.814878675 1.789125527
0.7 1.5345 1.534514 1.534516826 1.442409794
0.8 1.0214 1.021326 1.021328053 0.7620357587
0.9 0.40632 0.406198 0.4062256777 0.1988810030
1.0 -0.1520 -0.152115 0.1518890375 1.365712996

methods, the values τ , RMS and RES are shown in Figure 13 and Figure 13. The

Figure 12

(a) MQ-RBF, N=18, εopt = 0.76, k = 30, σ =

0.

(b) GA-RBF, N=12, εopt = 1.25, k = 30, σ =

0.

condition numbers of the matrix A product of the MQ-RBF and GA-RBF methods
are shown in Figure 14 and 14. Figure 15 shows a comparison of the present methods
and DTM method in the case k = 30, σ = 0. In this figure, numerical results of
MQ-RBF method and GA-RBF method with the implementation of the algorithms
2 and 3 by choosing N = 18 and N = 12 and finding εopt = 0.75 and εopt = 1.25
according to meshless points (4.5) are obtained, respectively.

In case k = 30, σ = 0.1 for the MQ-RBF method, by choosing N = 15, δ = 0.02
and applying algorithm 2, we find the optimal shape parameter εopt = 0.82 and in
the GA-RBF, by choosing N = 20, δ = 0.02 and applying algorithm 3, it is calculated
εopt = 3.95. In order to compare these two methods, the values τ , RMS and RES
are shown in Figure 16 and 16.
However, in case k = 2, σ = 0.1 for the MQ-RBF method, by choosing N = 15, δ =
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Figure 13

(a) MQ-RBF, N=18, εopt = 0.76, k = 30, σ =
0.

(b) GA-RBF, N=12, εopt = 1.25, k = 30, σ =
0.

Figure 14. Comparison of RBF-meshless and DTM sulotions, k =
30, σ = 0.

0.02 and applying algorithm 2, we find the optimal shape parameter εopt = 0.78 and
in the GA-RBF, by choosing N = 22, δ = 0.02 and applying algorithm 3, it is calcu-
lated εopt = 4.80. In order to compare these two methods, the values τ , RMS and
RES are shown in Figure 17 and Figure 17.

In Figure 18 and 18, the comparison of the present methods with Laplace decom-
position algorithm (LDA) [38] are represented in the cases k = 30, σ = 0.1 and
k = 2, σ = 0.1, respectively. Figure 18 shows that numerical solutions to (4.4) for
σ = 0 and σ = 0.1 are nearly identical in case of k = 30. However, Figure 18 shows
that solutions corresponding to the same two values of σ differ considerably in case
of k = 2.

5. Conclusion

We observed that the use of the CESTAC method and the CADNA library allows
us to find the optimal εopt and Nopt of the MQ-RBF and GA-RBF meshless meth-
ods. Also, the results of the proposed algorithms are validated. Finding the optimal
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Figure 15

(a) MQ-RBF, N=15, εopt = 0.82, k = 30, σ = 0.1 (b) GA-RBF, N=20, εopt = 3.95, k = 30, σ =

0.1

Figure 16

(a) N = 15, εopt = 0.78, k = 2, σ = 0.1, MQ-RBF (b) N = 22, εopt = 4.80, k = 2, σ = 0.1, GA-RBF

shape parameter, εopt, depends on: type of differential equation, type of meshless
points(Ξk), number of meshless points (N), radial basis function ψ and computer
precision. Consequently, it is suggested due to the numerical problems of the FPA,
the SA is replaced to implement the algorithms of the RBF-meshless methods.

Acknowledgments

The authors would like to thank the anonymous reviewers for their careful reading
and constructive comments to improve the quality of this work and also the Islamic
Azad university, central Tehran branch for their support during this research.



CMDE Vol. 8, No. 4, 2020, pp. 685-707 705

Figure 17. Comparison of RBF-meshless and LDA solutions

(a) k = 30, σ = 0.1 (b) k = 2, σ = 0.1
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