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Abstract In this paper we present two classes of third derivative multi-step methods (TDMMs)
that have good stability properties. Stability analysis of these methods is examined
and our numerical results are compared with the results of the existing method.
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1. Introduction

Many numerous work have focused on the development of more advanced and ef-
ficient methods for stiff problems [8, 11]. Enright, in [4] used the second derivative
multi-step methods for stiff ordinary differential equations. Cash used extended back-
ward differentiation formula for integration of stiff systems of ODEs and stiff initial
value problems in ODEs and also used the second derivative extended backward dif-
ferentiation formulas for the numerical integration of stiff systems [1, 2, 3]. Ibrahim
and Ismail applied the new efficient second derivative multi-step methods for solving
stiff systems [10]. Also, Hojjati, Hosseini and Rahimi Ardabili used the new second
derivative multi-step methods for stiff systems [9]. Dahaghin and Eskandari surveyed
stability analysis of the new second derivative multi-step method [7]. Ezzeddine in-
troduced third derivative multi-step methods in [6] and a class of these methods was
introduced in this paper. A potentially good numerical method for the solution of
stiff systems of ODEs must have good accuracy and some reasonably wide region of
absolute stability. A-stability requirement puts a sever limitation on the choice of
suitable methods for stiff problems. The search for higher order A-stable multi-step
methods is carried out in the two main directions. (a) Use higher derivatives of the
solutions. (b) Throw in additional stages, off-step points, super-future points and
like. This leads into the large field general linear methods [8]. In this paper we use
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derivatives of solutions up to third and super-future points for obtaining higher order
A-stable multi-step methods.

2. A general form of third derivative multi-step methods (TDMMs)

Let us consider the stiff initial value problem
y′(x) = f(x, y(x)) , y(x0) = y0, (2.1)

on the bounded interval I = [x0, xN ] where y : I → Rm and f : I × Rm → Rm is
twice continuously differentiable function. The general TDMM can be written as:

k∑
j=0

αjyn+j = h

k∑
j=0

βjfn+j + h2
k∑

j=0

γjgn+j + h3
k∑

j=0

δj ln+j , (2.2)

where αj , βj , γj , δj are parameters to be determined and g(x, y) = y′′(x), l(x, y) =
y′′′(x). If at least one of the parameters βk, γk and δk be nonzero then the method
(2.2) is implicit. By using Taylor expansion we see that the method (2.2) is of order
p if and only if

k∑
j=0

αjj
q = q

k∑
j=0

βjj
q−1+q(q−1)

k∑
j=0

γjj
q−2+q(q−1)(q−2)

k∑
j=0

δjj
q−3, (2.3)

with 3 ≤ q ≤ p.

3. Third derivative backward differentiation formulae (TDBDF)

We now introduce TDBDF that has the general form:
k∑

j=0

αjyn+j = hβkfn+k + h2γkgn+k + h3δkln+k, (3.1)

where αk = 1 and the other coefficients are chosen so that (3.1) be of order k + 2.
The coefficients of k-step methods (3.1) for k = 1, 2, · · · , 6 are given in Table 1.

Table 1. Coefficient of (3.1)

k 1 2 3 4 5 6
d 6 45 575 5845 874853 1009743

d× βk 6 42 510 4980 721140 809340
d× γk −3 −18 −198 −1800 −2466000 −264600
d× δk 1 4 36 288 36000 36000
d× α0 −6 3 −8 27 −1728 1000
d× α1 −48 81 −256 16875 −10368
d× α2 −648 1296 −80000 50625
d× α3 −6912 270000 −160000
d× α4 −1080000 405000
d× α5 −1296000
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3.1. Stability analysis. If we apply (3.1) to the test problem y′ = λy for which

y′′ = λ2y and y′′′ = λ3y, we get
k∑

j=0

Cj(h̄)yn+j = 0 where h̄ = λh, Ck(h̄) = 1− h̄βk −

h̄2γk − h̄3δk and Cj(h̄) = αj for j = 0, 1, · · · , k − 1. Therefore, the corresponding
characteristic equation of the kth order difference equation of the method (3.1) is

π(ξ, h̄) =

k∑
j=0

Cj(h̄)ξ
j = 0. (3.2)

To see the zero-stability of this method, one can easily show that by substituting
h̄ = 0 in (3.2) the resulted characteristic polynomial satisfies the root condition and
so the method for k = 1, 2, · · · , 14 is zero-stable.
To obtain the region of absolute stability we use the boundary locus method. By
using coefficients of different powers of h̄ in (3.2), we obtain

A3h̄
3 +A2h̄

2 +A1h̄+A0 = 0 (3.3)

where A0 = ξk +
k−1∑
j=0

αjξ
j , A1 = −βkξ

k, A2 = −γkξ
k and A3 = −δkξ

k. Inserting

ξ = eiθ, (3.3) gives us three roots h̄i(θ), i = 1, 2, 3 which describe the stability
domain. The method (3.1)) is A−stable for k = 2, 3, 4, and it is A(α)−stable for
k = 5, 6, · · · , 14. The corresponding (approximate) region of A(α)−stability found
using a numerical approach are given in Table 3 and Figures 1, 2. The method (3.1)

Figure 1. The boundary of the stability region of method (3.1) for
k = 2, 3, 4.

for k = 5, 6, ... is not A-stable. This is shown in figure 3.2 for k = 5, 6. Also in Figure
3, absolute stability region of the method (3.1) for k = 10 and k = 14 are shown.

4. Extended third derivative backward differentiation formula
(ETDBDF)

We now introduce an extended TDBDF that has the general form:
k∑

j=0

α̂jyn+j = hβ̂kfn+k + h2γ̂kgn+k + h3(δ̂kln+k − δ̂k+1ln+k+1) (4.1)



CMDE Vol. 8, No. 3, 2020, pp. 564-572 567

Figure 2. The boundary of the stability region of method (3.1) for
k = 5 (Left) and k = 6 (Right).

Figure 3. The boundary of the stability region of method (3.1)) for
k = 10 (Left) and k = 14 (Right).

where g(x, y) = y′′(x), l(x, y) = y′′′(x), α̂k = 1 and the other coefficients are chosen so
that (4.1) be of order k+3. The coefficients of k-step methods (4.1) for k = 1, 2, · · · , 6
are given in Table 2. In this method we use the one super-future point technique.

Assume that the solution values yn, yn+1, · · · , yn+k−1 are available. The method

Table 2. Coefficients of (4.1))

k 1 2 3 4 5 6
d 24 411 6943 3466613 3655632931 11222000501

d× β̂k 24 390 6330 3059700 3139692780 9413959380

d× γ̂k −12 −174 −2610 −1188360 −1162438200 −3349672200

d× δ̂k 5 48 585 232992 206892000 553212000

d× δ̂k+1 1 4 27 6912 4320000 8640000

d× α̂0 −24 21 −58 7803 −2941056 3873000

d× α̂1 −432 729 −88832 33598125 −46037376

d× α̂2 −7614 561168 −191680000 263266875

d× α̂3 −3946752 810270000 −1003040000

d× α̂4 −4304880000 3189105000

d× α̂5 13629168000

(4.1) is used to solve differential equation (2.1) by the following stages.
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Stage 1. Compute ȳn+k as the solution of
k−1∑
j=0

αjyn+j + αkȳn+k = hβkf̄n+k + h2γkḡn+k + h3δk l̄n+k (4.2)

where f̄n+k = f(xn+k, ȳn+k), ḡn+k = g(xn+k, ȳn+k), l̄n+k = l(xn+k, ȳn+k), αk = 1
and the other coefficients are chosen so that (4.2) has order k+2. The coefficients of
k-step methods of class (4.2) are given in Table 1, for k = 1, 2, · · · , 6.
Stage 2. Compute ȳn+k+1 as the solution of

k−2∑
j=0

αjyn+j+1+αk−1ȳn+k+αkȳn+k+1 = hβkf̄n+k+1+h2γkḡn+k+1+h3δk l̄n+k+1.

(4.3)

where f̄n+k+1 = f(xn+k+1, ȳn+k+1), ḡn+k+1 = g(xn+k+1, ȳn+k+1) and l̄n+k+1 =
l(xn+k+1, ȳn+k+1).
Stage 3. Compute yn+k by

k∑
j=0

α̂jyn+j = hβ̂kfn+k + h2γ̂kgn+k + h3(δ̂kln+k − δ̂k+1 l̄n+k+1). (4.4)

Theorem 4.1. In order to method introduced in (4.1) we have
(i) Relation (4.2) is of order k + 2.
(ii) Relation (4.1) is of order k + 3.
(iii) If the implicit algebra equations defining ȳn+k, ȳn+k+1 are solved exactly, then
the scheme (4.4) is of order k + 3.

Proof. Suppose the values yn, yn+1, · · · , yn+k−1 be exact. From (4.2) we have

y(xn+k)− ȳn+k = C1h
k+3y(k+3)(xn+k) + O(hk+4). (4.5)

From (4.5) for one super-future point and if we suppose that y(xn+k) = yn+k we have

y(xn+k+1)− ȳn+k+1 = C1h
k+3y(k+3)(xn+k+1) + O(hk+4)

= C1h
k+3y(k+3)(xn+k) + C1h

k+4y(k+4)(xn+k) + O(hk+4).

But since in (4.3) we apply ȳn+k, we must add the error of (y(xn+k) − ȳn+k) to the
above expression. Hence

y(xn+k+1)− ȳn+k+1 = C1(1− αk−1)h
k+3y(k+3)(xn+k) + O(hk+4). (4.6)

If C2h
k+4y(k+4)(xn+k) + O(hk+5) be the defect of formula (4.5) then by replacing

l(xn+k+1, y(xn+k+1)) with l(xn+k+1, ȳn+k+1) and adding the expression obtained in
(4.6) to this error we get

y(xn+k)− yn+k = C2h
k+4y(k+4)(xn+k)

− h3δ̂k+1[l(xn+k+1, y(xn+k+1))− l(xn+k+1, ȳn+k+1)]
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Also from (4.6) we have
l(xn+k+1, y(xn+k+1))− l(xn+k+1, ȳn+k+1)

=
∂l

∂y
(xn+k+1, η)(y(xn+k+1)− ȳn+k+1)

=
∂l

∂y
(xn+k+1, η)C1(1− αk−1)h

k+3y(k+3)(xn+k)

+ O(hk+4).

This yields
y(xn+k)− yn+k = hk+4[C2y

(k+4)(xn+k)

− ∂l

∂y
(xn+k+1, η)C1(1− αk−1)h

2δ̂k+1y
(k+3)(xn+k)]

+ O(hk+5)

which shows that the order of scheme (4.4) is k + 3. □

Remark 4.2. The class of ETDMM methods are 3-stage methods therefore to reduce
the implementation cost of ETDBDFs, we consider the stage 3 as folows:
Stage 3∗. Compute yn+k by

yn+k−hβkfn+k − h2γkgn+k − h3δkln+k = −
k−1∑
j=0

α̂jyn+j (4.7)

+h(β̂k − βk)f̄n+k + h2(γ̂k − γk)ḡn+k + h3(δ̂k − δk)l̄n+k − h3δ̂k+1 l̄n+k+1.

Therefore, the Jacobian matrix in each of the 3 stages (1), (2) and (3∗) is the same
as I − hβk

∂f
∂y − h2γk

∂g
∂y − h3δk

∂l
∂y .

4.1. Stability analysis. We now examine the stability of our method. If we apply
(4.2) and (4.4) to the test problem y′ = λy for which y′′ = λ2y and y′′′ = λ3y, we get

k∑
j=0

Cj(h̄)yn+j = 0 (4.8)

where
h̄ = λh , A = 1− h̄βk − h̄2γk − h̄3δk,
d0 = α0αk−1

A2 , dj =
αjαk−1

A2 − αj−1

A , j = 1, 2, · · · , k − 1,

Ck = 1− h̄β̂k − h̄2γ̂k − h̄3δ̂k , Cj = α̂j + h̄3δ̂k+1dj , j = 0, 1, · · · , k − 1.
Therefore the corresponding characteristic equation of the kth order difference equa-
tion of the method (4.1) is

π(ξ, h̄) =

k∑
j=0

Cjξ
j = 0. (4.9)

To see the zero-stability of this method, one can easily show that by substituting
h̄ = 0 in (4.9) the resulted characteristic polynomial satisfies the root condition and
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so the method is zero-stable. For more details see [5, 8].

Table 3. A(α)−stability of TDMM method

k p α(◦) k p α(◦)
2 4 90 9 11 78.2
3 5 90 10 12 71.8
4 6 90 11 13 69
5 7 89.93 12 14 61.2
6 8 89.03 13 15 35.7
7 9 87.82 14 16 23.8
8 10 85.69 − − −

Table 4. A(α)−stability of ETDBDF

k p α(◦) k p α(◦)
1 4 90 9 12 87.69
2 5 90 10 13 85.59
3 6 90 11 14 82.66
4 7 90 12 15 78.9
5 8 90 13 16 74.1
6 9 89.92 14 17 64.4
7 10 89.76 15 18 57.8
8 11 89.03 16 19 41.9

Table 5. A(α)−stability of Ezzeddine method

k p α(◦) k p α(◦)
1 4 90 4 7 89.86
2 5 90 5 8 89.1
3 6 90 − − −

To obtain the region of absolute stability we use the boundary locus method. By
using coefficients of different powers of h̄ in (4.9), we obtain

9∑
j=0

Aj h̄
j = 0 (4.10)

where Aj , j = 0, 1, · · · , 9 are functions of ξ and k. Inserting ξ = eiθ, Eq. (4.10)
gives nine roots h̄i(θ) , i = 1, 2, · · · , 9 which describe the stability domain. The cor-
responding (approximate) region of A(α)−stability found using a numerical approach
are given in Table 4.
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Remark 4.3. Comparison of Tables 3, 4 and 5 shows that the regions of A(α)−stability
for our methods are larger than the Ezzeddine’s method. The method (4.1) has the
largest A(α)−stability region in the introduced multi-step methods until now. For
more details see, [1, 2, 3, 4, 5, 6, 9, 10].

5. Numerical results

We can see the numerical results of our method in the following examples.

Example 5.1. Consider the following stiff initial value problem:

y′1 = −αy1 − βy2 + (α+ β − 1)e−x

y′2 = βy1 − αy2 + (α− β − 1)e−x

with initial value y(0) = (1, 1)T . The eigenvalues of the Jacobine associated with the
resulting system are −α ± iβ and the required solution is y1(x) = y2(x) = e−x. The
error results for α = 1 and β = 15 are shown in Table 6.

Table 6. The error of example 5.1 for α = 1 and β = 15.

x yi ETDBDF TDBDF Ezzeddine′s method
5 y1 6.0× 10−15 1.3× 10−13 4.23× 10−15

y2 8.9× 10−15 2.1× 10−13 3.04× 10−15

10 y1 4.3× 10−17 9.3× 10−15 6.27× 10−17

y2 6.0× 10−17 01.4× 10−15 2.83× 10−17

15 y1 2.9× 10−19 9.9× 10−17 6.56× 10−19

y2 4.0× 10−19 6.2× 10−17 1.50× 10−19

20 y1 2.7× 10−21 6.6× 10−19 5.76× 10−21

y2 1.9× 10−21 4.2× 10−19 1.52× 10−22

Example 5.2. Let us consider the system of differential equations as follows:

y′1 = −20y1 − 0.25y2 − 19.75y3,

y′2 = 20y1 − 20.25y2 + 0.25y3,

y′3 = 20y1 − 19.75y2 − 0.25y3,

with y(0) = (1, 0,−1) and theoretical solution

y1 =
1

2
(e−0.5x + e−20x(cos(20x) + sin(20x)),

y2 =
1

2
(e−0.5x − e−20x(cos(20x)− sin(20x)),

y3 =
1

2
(e−0.5x + e−20x(cos(20x)− sin(20x)).

We solve this problem at x = 10, 20, 30 with h = 0.01 and k = 4 and compared the
results with those of Ezzeddine’s method [6]. The results tabulate in Table 7.
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Table 7. The error of example 5.2.

x yi ETDBDF TDBDF Ezzeddine′s method
10 y1 7.5× 10−22 1.1× 10−21 5.8× 10−20

y2 7.5× 10−22 1.1× 10−21 5.8× 10−20

y3 7.5× 10−22 1.1× 10−21 5.8× 10−20

20 y1 1.0× 10−23 1.3× 10−23 8.0× 10−22

y2 1.0× 10−23 1.3× 10−23 8.0× 10−22

y3 1.0× 10−23 1.3× 10−23 8.0× 10−22

30 y1 1.0× 10−25 1.2× 10−25 8.2× 10−24

y2 1.0× 10−25 1.2× 10−25 8.2× 10−24

y3 1.0× 10−25 1.2× 10−25 8.2× 10−24

6. Conclusion

In this paper two classes of third derivative multi-step methods (TDMMs) with
good stability properties have been introduced. We discussed stability analysis of
these methods. Comparing A(α)−stability region of our methods with the presented
methods showed that our methods have the largest A(α)−stability region.
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