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Abstract In this study, the asymptotic Adomian decomposition method (AADM) is imple-
mented to solve fractional order Riccati differential equations. The product integra-
tion method is used to solve the singular integrals, resulted from fractional derivative.
Some fractional order Riccati differential equations are presented as examples to il-

lustrate the ability and efficiency of the proposed approach. The approximate solu-
tions of AADM are compared with the results of the Laplace Adomian Pade method
(LAPM). Generalizing AADM for solving fractional Riccati differential equations by

the far-field approximation indicates the novelty of the paper.
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1. Introduction

The introduction of the fractional calculus goes back to more than 300 years ago.
The fractional calculus appears in many natural phenomena [17], so this branch of
mathematics is very popular for scientists. One of the important branches of fractional
calculus is the fractional differential equations. In recent years, many fractional differ-
ential equations have been investigated and various approaches have been adopted to
solve such equations, in applied mathematics [17, 49]. All of the numerical methods
used to solve the fractional differential equations are the same as those are applied
to solve differential equations [4, 15, 20, 21, 24, 28, 33, 34, 41, 47, 59]. Adomian
introduced a different interpretation of his decomposition method called asymptotic
Adomian decomposition method [6, 33, 34]. In this approach, the canonical form has
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been changed, but the iteration is the same as in the main approach. AADM leads to
a steady state solution of the equation. In fact, instead of nested integrations, which
are used in the decomposition approach, we are dealing with nested differentiation
(see [5, 6, 7, 8, 11, 50]). It should be mentioned that the convergence of Adomian de-
composition series has been proved by several articles. In [14], Cherruault presented
the first proof of the convergence of the ADM in accordance with the fixed point
theorem. Furthermore, the convergence of the ADM for solving linear and nonlinear
differential equations and integral equations were discussed by Cherruault and his
collaborators [1, 2, 13, 25].

The order of convergence of the ADM was introduced by Babolian and Biazar
[10]. Abdelrazec and Pelinovsky used the Cauchy Kowalevskaya theorem to demon-
strate a new proof of convergence of the ADM [3]. Many other papers such as
[26, 27, 38, 51, 52] previously discussed such a problem. AADM is rarely used to
achieve the approximate solution of fractional differential equation problems. In this
paper, AADM has been stated for solving fractional order Riccati differential equa-
tions, by the far-field approximation, for the first time. AADM is used for solving
Riccati differential equations [11]. One of the most important and well-known among
fractional order differential equations is the Riccati, that finds many applications in
physical phenomena, mechanics and other fields of sciences (see [12, 35, 39, 53, 58]).
For example, the Riccati equation appears in super symmetry theories [16], quantum
chemistry [22], nonlinear physics [46], and thermodynamics [54], see [11] for more
examples. The general form of these equations is as follows:

Dα
xu(x) = r(x)u2(x) + q(x)u(x) + p(x), x > 0, 0 < α ≤ 1, (1.1)

with the initial condition

u(0) = k, (1.2)

where p(x), q(x) and r(x) are known functions, Dα
x is the Caputo fractional deriv-

ative operator that has been defined in the preliminaries, next section. For α = 1,
the fractional order Riccati differential equation is the same as the Riccati differential
equation of order one. There are many approaches used for solving differential equa-
tions that can be generalized for solving fractional order equations. Some of these
methods are as the following:
Differential transform [20], Adomian decomposition [28], homotopy analysis [21, 24],
homotopy perturbation [4], optimal homotopy asymptotic [30, 42, 43, 44, 45], finite
difference [15], variational iteration [18, 32, 48, 60, 61], Taylor matrix [23], Runge-
Kutta [40], B-spline functions [36, 37], Chebyshev cardinal operational matrix [31],
first integral [29], and Tau [56].
The rest of this paper is organized as follows; in section 2, some preliminaries such
as product integration approach and Hermite interpolation is introduced. In section
3, AADM is described. Section 4 is devoted to applying AADM for solving frac-
tional Riccati differential equations and four examples will be presented to illustrate
the ability and the efficiency of the proposed method. Eventually, discussions and
conclusions are presented in section 5.
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2. Preliminaries

The purpose of this section is to recall some prefaces for the proposed method.

2.1. Caputo fractional derivatives. The Caputo fractional derivative of a function
f(t) is defined as follows

Dα
xf(x) =


1

Γ(m− α)

∫ x

x0
(x− t)m−α−1f (m)(t)dt, m− 1 < α < m, m ∈ N,

dm

dxm
f(x) α = m, m ∈ N,

(2.1)

where Γ is the Gamma function. Similar to integer-order differentiation, Caputo
fractional derivative operator is a linear operation

Dα
x (rf(x) + kg(x)) = rDα

xf(x) + kDα
x g(x), (2.2)

where r and k are real constants [9, 55].

2.2. Product integration. We now consider the numerical solution of a Volterra
integral equation,

x(s) = y(s) +

∫ s

a

k (s, t, x(t)) dt, a ≤ s ≤ b, (2.3)

where k (s, t, x(t)) is a singular kernel. It is presumed that the kernel function badly
behaves, and

k (s, t, x(t)) = p(s, t)k̄ (s, t, x(t)) , (2.4)

where p(s, t) and k̄ (s, t, x(t)) are respectively singular and well behaved functions of
their arguments. Then the product integration can be used to solve equation (2.3).
The interval [a, b] is subdivided into M subintervals of equal lengths, hi where

hi = si+1 − si, i = 0, 1, · · · ,M − 1 (2.5)

and

a = s0 < s1 < · · · < sM = b. (2.6)

Then the method continues by approximating the integral term in (2.3). For s =
si, i = 1, · · · ,M , by a quadrature rule of the following form∫ si

a

p(si, t)k̄ (si, t, x(t)) dt ≈
i∑

j=0

wij k̄ (si, tj , x(tj)) , (2.7)

where ti = si, i = 0, 1, · · · ,M the weights are constructed by insisting that the rule
in (2.7) be exact when k̄ (si, t, x(t)) is a polynomial in t of degree less than or equal
to r. For each value of i, the existence of (r + 1) moments is needed.

µij =

∫ si

a

tjp(si, t)dt, j = 0, 1, · · · , r. (2.8)
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By interpolating well behaved part of the kernel function at the points sj , sj+1 and
using numerical integration, it implies that∫ si

a

p(si, t)k̄ (si, t, x(t)) dt =
i−1∑
j=0

∫ tj+1

tj

p(si, t)k̄(si, t, x(t))dt (2.9)

≈
i−1∑
j=0

∫ tj+1

tj

p(si, t){
(tj+1 − t)

hj
k̄(si, tj , x(tj))

+
(t− tj)

hj
k̄(si, tj+1, x(tj+1))}dt (2.10)

=
i∑

j=0

wij k̄ (si, tj , x(tj)) . (2.11)

Hence∫ si

a

p(si, t)k̄(si, t, x(t))dt =

i∑
j=0

wij k̄ (si, tj , x(tj)) +O(h2). (2.12)

where the weights are calculated as follows

wi0 =
1

h0

∫ t1

t0

p(si, t)(t1 − t)dt, (2.13)

wij =
1

hj

∫ tj+1

tj

p(si, t)(tj+1 − t)dt

+
1

hj−1

∫ tj

tj−1

p(si, t)(t− tj−1)dt j = 1, 2, · · · , i− 1, (2.14)

wii =
1

hi−1

∫ ti

ti−1

p(si, t)(t− ti−1)dt. (2.15)

See [19] for more details and examples.

2.3. Hermite interpolation. Now, we need to explain Hermite interpolation [57].

Consider zi, f
(k)
i , i = 0, 1, · · · , n, k = 0, 1, · · · ,mi − 1, are real numbers, in which

z0 < z1 < · · · < zn. The Hermite interpolation is determining a polynomial P whose
degree is less than or equal to m, P ∈ Πm where

m+ 1 =

n∑
i=0

mi, (2.16)

and which satisfies the bellow conditions

P (k)(zi) = f
(k)
i , i = 0, 1, · · · , n, k = 0, 1, · · · ,mi − 1. (2.17)
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Hermite interpolating polynomials can be expressed according to Lagrange interpo-
lation formula. P ∈ Πm can be defined as follows

P (z) =

n∑
i=0

mi−1∑
k=0

f
(k)
i Lik(z), (2.18)

(2.18) satisfies in (2.17). The polynomials Lik(z) ∈ Πm are generalized Lagrange poly-
nomials. These polynomials are defined as follows: by helping auxiliary polynomials

lik(z) =
(z − zi)

k

k!
Πn

j=0
j ̸=i

(
z − zj
zi − zj

)mj

, 0 ≤ i ≤ n, 0 ≤ k ≤ mi, (2.19)

put

Li,mi−1(z) = li,mi−1(z), i = 0, 1, · · · , n, (2.20)

and for k = mi − 2,mi − 3, · · · , 0,

Lik(z) = lik(z)−
mi−1∑
θ=k+1

lθik(zi)Liθ(z). (2.21)

By strong induction

Lα
ik(zj) =

{
1 if i = j and k = α

0 otherwise
(2.22)

So, P in (2.18) is called Hermite interpolating polynomial.

Theorem 2.1. For arbitrary real numbers zi, f
(k)
i , i = 0, 1, · · · ,mi − 1, with z0 <

z1 < · · · < zn, there exists exactly one polynomial P ∈ Πm, m+ 1 =
∑n

i=0 mi which
it satisfies in equation (2.17).

Proof. (See [57]). □

3. Asymptotic decomposition method

In this section, first AADM approach is introduced and then its application in
solving fractional Riccati differential equations will be presented.

3.1. Description of AADM. In this section, we explain Adomian asymptotic de-
composition method for solving a nonlinear differential equation as, Fu = g(x), where
Fu is the summation of a linear term, Lu and a nonlinear term Nu, in the other words

Lu+Nu = g. (3.1)

It must be noted that Nu is represented by
∑∞

n=0 An, where
An = An(u0, u1, · · · , un) is called Adomian polynomial, defined as the following [7]

An =
1

n!

dn

dλn

[
N

( ∞∑
k=0

ukλ
k

)]
λ=0

. (3.2)
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Then, by inserting u =
∑∞

n=0 un in (3.2), we have

∞∑
n=0

An = g(x)− L
∞∑

n=0

un. (3.3)

We identify A0 = g(x), A1 = −Lu0, A2 = −Lu1, etc. Then A0 derive from (3.2) and
u0 will be determined, by the following process we determine u1, u2, · · · and hence
we consider φv(x) =

∑v−1
k=0 uk(x) as an approximate solution of nonlinear differential

equation, that converges rapidly to u =
∑∞

k=0 uk when v → ∞. It must be noted
that one of the advantages of this approach for solving differential equations is that
any initial condition is not required to gain an asymptotic solution. In this approach
for solving differential equations, nested differentiations are used instead of nested
integrations which are used in the decomposition method. In fact we do not inverting
L to obtain the solution, but instead, we decompose the nonlinear operator, Nu, and
determine an asymptotic solution.

3.2. Application of AADM for solving fractional Riccati differential equa-
tions. In this section, we apply the Adomian asymptotic decomposition method for
solving fractional order Riccati differential equations. We rewrite (1.1) as

r(x)u2(x) = −p(x)− q(x)u(x) +Dα
xu(x). (3.4)

When the coefficient r(x) ̸= 0, we have

u2(x) = −p(x)

r(x)
− q(x)

r(x)
u(x) +

1

r(x)
Dα

xu(x) (3.5)

According to subsection 3.1 by substituting u(x) =
∑∞

n=0 un(x), u
2(x) =

∑∞
n=0 An(x),

and Dα
xu(x) =

∑∞
n=0 D

α
xun(x) respectively, we obtain

∞∑
n=0

An(x) = −p(x)

r(x)
− q(x)

r(x)

∞∑
n=0

un(x) +
1

r(x)

∞∑
n=0

Dα
xun(x). (3.6)

Hence

A0(x) = −p(x)

r(x)
, (3.7)

An+1(x) = −q(x)

r(x)
un(x) +

1

r(x)
Dα

xun(x), n ≥ 0. (3.8)

It must be noted that Adomian polynomials An for f(u) = u2 are An =
∑n

i=0 uiun−i.

As a result, by substituting A0(x) = u2
0(x) and An+1(x) =

∑n+1
i=0 ui(x)un+1−i(x) in

(3.8), we rewrite the recursion scheme (3.8) as

n+1∑
i=0

ui(x)un+1−i(x) = −q(x)

r(x)
un(x) +

1

r(x)
Dα

xun(x), n ≥ 0. (3.9)

After appropriate manipulations, we obtain

u0(x) =

√
−p(x)

r(x)
, (3.10)
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un+1(x) =
1

2u0(x)
(−q(x)

r(x)
un(x) +

1

r(x)
Dα

xun(x)

−
n∑

i=1

ui(x)un+1−i(x)), n ≥ 0.

(3.11)

Thus, by summation of the obtained v-terms of ui’s, we have φv(x) =
∑v−1

k=0 uk(x).
This is the asymptotic solution of fractional order Riccati differential equations, where
x is far from the initial point x = x0.

4. Numerical Examples

In this section, the application of AADM in solving fractional Riccati differential
equations has been illustrated by four examples.

Example 4.1. Consider the Riccati differential equation

Dα
xu(x) = 1 + 2u(x)− u2(x), 0 < α ≤ 1, (4.1)

with the initial condition

u(0) = 0. (4.2)

The exact solution for α = 1 is

u(x) = 1 +
√
2 tanh

[
√
2x+

1

2
log

(√
2− 1√
2 + 1

)]
. (4.3)

By Adomian asymptotic decomposition method for solving fractional order Riccati
differential equation according to recursion schemes (3.10) and (3.11), the solution
components of the far-field approximation φv(x) are computed as

u0(x) = 1, u1(x) = 1, u2(x) =
1

2
, · · · (4.4)

Thus, by calculating ten terms of asymptotic approximation, we gain φ10(x) =∑9
k=0 uk(x), as a result u(x) ≈ φ10(x) = 2.4258 for α = 1 which is an approxi-

mation of the horizontal asymptote of the exact solution with absolute error 0.0116
when the independent variable x in (4.3) approaches infinity. The curves of far-
field approximation φ10(x) obtained by AADM, far field approximation achieved by
Laplace Adomian Pade method (LAPM) [35] and the exact solution u(x) in example
4.1 are plotted in figure 1. Comparison between the exact solution, the AADM, and
the LADM solutions shows that the AADM solution converges to the exact solution
when x → ∞. So the far-field curve of example 4.1 gained by AADM overlaps with
the exact solution when the independent variable x approaches infinity.

Example 4.2. Consider the following Riccati differential equation:

Dα
xu(x) = 1− u2(x), 0 < α ≤ 1, (4.5)

with the initial condition

u(0) = 0. (4.6)
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Figure 1. The approximate solutions solved by different methods in
example 4.1 for α = 1

The exact solution for α = 1 is

u(x) =
e2x − 1

e2x + 1
. (4.7)

By Adomian asymptotic decomposition method for solving fractional order Riccati
differential equation based on recursion schemes (3.10) and (3.11) the solution com-
ponents of the far-field approximation φv(x) are computed as

u0(x) = 1, u1(x) = 0, u2(x) = 0, · · · (4.8)

Thus, by calculating three terms of asymptotic an approximation, we gain φ3(x) =∑2
k=0 uk(x), as a result u(x) = φ3(x) = 1 for α = 1 which is approximation of the

horizontal asymptote of the exact solution with absolute error 0.0000 when the inde-
pendent variable x in (4.7) approaches infinity. The curves of far-field approximation

Figure 2. The approximate solutions solved by different methods in

example 4.2 for α = 1
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φ3(x) obtained by AADM, far field approximation achieved by LAPM [35] and the
exact solution u(x) in example 4.2 are plotted in figure 2. Comparison between the
exact solution, the AADM, and the LADM solutions show that the AADM solution
converges to the exact solution when x → ∞. So the far-field curve of example 4.2
gained by AADM overlaps with the exact solution when the independent variable x
approaches infinity.

Example 4.3. Consider the following Riccati differential equation:

Dα
xu(x) = 1 + x2 − u2(x), 0 < α ≤ 1, (4.9)

with the initial condition

u(0) = 1. (4.10)

The exact solution for α = 1 is

u(x) = x+
e−x2

1 +
∫ x

0
e−t2dt

. (4.11)

If α = 1, the Caputo fractional derivative is reduced to the ordinary derivative opera-
tor in (4.9), so the solution components of the far-field approximation φv(x) according
to (3.10) and (3.11) can be calculated as follows (see [11])

u0(x) =
√

1 + x2, u1(x) = − x

2(1 + x2)
, u2(x) =

2− 3x2

8(1 + x2)
5
2

,

u3(x) =
3x(3− 2x2)

8(1 + x2)4
, · · · (4.12)

Thus, by calculating four terms of asymptotic approximation, we gain φ4(x) =∑3
k=0 uk(x), as a result u(x) ≈ φ4(x) =

√
1 + x2− x

2(1 + x2)
+

2− 3x2

8(1 + x2)
5
2

+
3x(3− 2x2)

8(1 + x2)4
,

which is the far-field approximation of the exact solution. If, x → ∞ then |u(x) −
φ4(x)| → 0.

Figure 3. The approximate solutions solved by different methods in

example 4.3 for α = 1
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Figure 4. The approximate solutions solved by different methods in
example 4.3 for α = 1

Figures 3 and 4 show a comparison between the exact solution, the AADM and the
LADM approximate solutions for example 4.3. From figure 3, the solution of AADM
is not in agreement with the exact solution in initial values, but from figure 4, the
far-field curve of example 4.3 gained by AADM overlaps with the exact solution when
the independent variable x approaches infinity.

For obtaining un+1(x) from equation (3.11), the Caputo fractional derivative of
un(x), D

α
x (x), is needed. Product integration approach is implemented, which in this

process u1(x) appears in a complicated form when 0 < α < 1. To proceed, u1(x) is
approximated by Hermite interpolation. So when 0 < α < 1, the solution components
of the far-field approximation φv(x) are computed as

u0(x) =
√

1 + x2, (4.13)

u1(x) =
−1

2
√
1 + x2

Dα
xu0(x) (4.14)

=
−1

2
√
1 + x2

1

Γ(1− α)

∫ x

0

(x− t)−α 2t√
1 + t2

dt. (4.15)

According to subsection 2.2

u1(x) ∼=
−1

2
√
1 + x2

1

Γ(1− α)

i∑
j=0

wij
2tj√
1 + t2j

(4.16)

where hi = si+1− si, i = 0, 1, · · · , N − 1 and a = s0 < s1 < · · · < sM = b. It must be
noted that ti = si, i = 0, 1, · · · , N . We consider hi = h, i = 0, 1, · · · ,M−1. Suppose
that si = ih, i = 0, 1, · · · ,M , we gain

u1(x) ∼=
−1

2
√
1 + x2

1

Γ(1− α)

i∑
j=0

wij
2jh√

1 + j2h2
, (4.17)
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where the weights are calculated from the expressions below:

wi0 =
1

h

∫ h

0

(ih− t)−α(h− t)dt, (4.18)

wij =
1

h

∫ (j+1)h

jh

(ih− t)−α ((j + 1)h− t) dt+

1

h

∫ jh

(j−1)h

(ih− t)−α(t− (j − 1)h)dt, (4.19)

wii =
1

h

∫ ih

(i−1)h

(ih− t)−α(t− (i− 1)h)dt. (4.20)

Putting an example like α = 0.98 in u1(x) can help us to follow the behavior of
approximate solution u(x) according to α. We reconstruct the polynomial of u1(x)
by using Hermite interpolation in arbitrary interval. All calculations have been done
in Maple.

u1(x) = −0.9961 + (x− 1)(−0.0264) + (x− 1)2(0.2102)

+(x− 1)2(x− 2)(−0.1614) + (x− 1)2(x− 2)2(0.0599)

+(x− 1)2(x− 2)2(x− 3)(−0.0194) + (x− 1)2(x− 2)2(x− 3)2(0.0047)

+(x− 1)2(x− 2)2(x− 3)2(x− 4)(−0.0010)

+(x− 1)2(x− 2)2(x− 3)2(x− 4)2(0.0004)

+(x− 1)2(x− 2)2(x− 3)2(x− 4)2(x− 5)(−0.0002) (4.21)

Hence, according to the recursion scheme (3.11), we gain

u2(x) ∼=
1

2
√
1 + x2

(
−Dα

xu1(x)− (u1(x))
2
)
, α = 0.98 (4.22)

Finally

u2(x) =
1

2
√
1 + x2

(21.337x51/50 − 0.4248x301/50 + 2.4278x251/50

−26.4247x101/50 − 7.4887x1/50 + 0.0415x351/50 − 8.5210x201/50

+18.9598x151/50 − 0.0017x251/50 − 0.0017x401/50

−(−0.9697− 0.0264x+ 0.2102(x− 1)2 − 0.1614(x− 1)2(x− 2)

+0.0594(x− 1)2(x− 2)2 − 0.0194(x− 1)2(x− 2)2(x− 3)

+0.0047(x− 1)2(x− 2)2(x− 3)2 − 0.0010(x− 1)2(x− 2)2(x− 3)2(x− 4)

+0.0004(x− 1)2(x− 2)2(x− 3)2(x− 4)2

−0.002(x− 1)2(x− 2)2(x− 3)2(x− 4)2(x− 5))2). (4.23)

From which we obtain approximate solution of example 4.3 such as u(x) ∼= φ3(x) =∑2
k=0 uk(x) when α = 0.98. The curve of far-field approximation ϕ3(x) is plotted in
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Figure 5. The approximate solutions solved by AADM methods in
example 4.3 for α = 0.98

figure 5 when α = 0.98, so we can obtain approximate solution of u(x) by AADM,
for arbitrary values of 0 < α < 1.

Example 4.4. Consider the following Riccati differential equation:

Dα
xu(x) = x+ 3u(x)− u2(x), 0 < α ≤ 1, (4.24)

with the initial condition

u(0) = 1. (4.25)

If α = 1, the solution components of the far-field approximation ϕv(x) according to
(3.10) and (3.11) are calculated as

u0(x) =
√
x, u1(x) =

3

2
− 1

2x
, u2(x) =

1

2
√
x

(
9

4
− 1

6x2

)
· · · (4.26)

Thus, by calculating three terms of asymptotic approximation, we gain

ϕ3(x) =
∑2

k=0 uk(x), as a result u(x) ≈ ϕ3(x) =
√
x +

3

2
− 1

2x
+

1

2
√
x

(
9

4
− 1

6x2

)
,

which is far-field approximate solution. If α =
1

2
, the far-field approximation ϕ2(x)

will be achieved as

u(x) ≈ ϕ2(x) =
√
x+

3

2
−

√
π

4

1√
x
. (4.27)

Figure 6 shows a comparison between the far field approximate solutions solved
by AADM when α is 1

2 and 1. All calculations have been done using maple on a
computer with Intel Core i5-2430M CPU 2.400 GHz, 4.00 GB of RAM and 64-bit
operating system (windows 7).
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Figure 6. The far-field approximate solutions of example 4.4 solved
by AADM for α = 1

2
, 1

5. Conclusion

In this work, the asymptotic Adomian decomposition method has been imple-
mented for solving fractional Riccati differential equations successfully. Instead of
nested fractional integrations, in decomposition method, nested fractional differenti-
ations have been used. In the four examples for fractional Riccati differential equa-
tions, an acceptable horizontal asymptotic approximate solution has been achieved.
In the example of three, product integration is used to overcome the singularity in
the integrand. Implemented product integration leads to a good approximate solution
for arbitrary interval [a, b], especially when x approaches to infinity. Using Hermite
interpolation, for a complicated form of un(x), is another novelty of this research.
The application of the proposed approach to singular equations is under study in
our research group. As a direction for future research, the application of AADM for
asymptote solution or traditional solution of other fractional functional equations can
be proposed.
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