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1. Introduction

Fractional calculus and fractional differential equations are commonly used in most
areas of science, including mathematics, chemistry, physics, and engineering [1, 2, 5].
Many researchers have used fractional calculus to model the nonlinear oscillation of
earthquakes [17], fluid dynamics for traffic flow [18], frequency-dependent damping
behavior of viscoelastic materials [2], signal processing [27], and control theory [5].
This increase in applications have led to schemes being proposed to solve fractional
differential equations. The most frequently used methods are Adomian decomposition
method (ADM)[25], Homotopy Perturbation Method (HPM)[13], homotopy analysis
method[16], and Variational Iteration Method (VIM)[12]. Moreover, the operational
matrices of fractional order integration for Haar wavelets [9, 22, 29] have been de-
veloped to solve fractional differential equations. In the last two decades, the use
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of wavelets for solving fractional differential equations has increased. Of these ap-
proaches, Haar wavelets have been more concerned with their simple nature . The
matrix of the integral operator was first obtained by Chen and Hsiao [8]. As a branch
of mathematical physics, fluid dynamics and astrophysics, it examines singular non-
linear partial differential equations. In fact, these equations have been used to model
phenomena in these three fields. Examples of nonlinear singular equations include the
equation of motion of a point mass in a central force field, the generalized equation
of conventional current flow, Navier-Stokes cylindrical and spherical equation and
hydrodynamic equations of cylindrical and spherical fluid instability. Despite their
importance, singular nonlinear partial differential equations (PDEs) are difficult to
solve [10, 11, 33]. These equations have recently been solved using methods such as
ADM [14, 32], modified HPM (MHPM) [30], HPM [13], and MDM [11]. Nevertheless,
a literature survey makes it clear that the Haar and second-kind Chebyshev wavelets
collocation methods are never attempted when solving singular nonlinear PDEs. The
goal of the current research is to solve a class of singular nonlinear differential equa-
tions using the Haar and second-kind Chebyshev wavelets collocation methods in
combination with the Picard technique. The Picard technique was used to convert a
fractional nonlinear singular equation into a system of linear equations to obtain an
approximate solution using the Haar and second-kind Chebyshev wavelets collocation
methods.

The model is:

∂αu

∂tα
− a(x)

∂βu

∂xβ
+ d(x)up = f(x, t), (1.1)

0 < α ≤ 1, 1 < β ≤ 2, p > 1,

with initial and boundary conditions,

u(x, 0) = g1(x), 0 ≤ x ≤ 1.

u(0, t) = Y1(t), u(1, t) = Y2(t), t ∈ [0, 1],

such that a(x) or d(x) maybe have singularity at the point x = 0, ∂αu
∂tα donates

the Caputo fractional derivative to time and g1(x), Y1(t), Y2(t), f(x, t) are the given
functions. It must be noticed that till now, no one has attempted the wavelets (Haar
and Chebyshev) collocation Picard methods on solving fractional singular nonlinear
partial differential equations.

2. Wavelets and operational matrix of general order integration

2.1. Haar wavelet and operational matrix of general order integration. The
lth Haar wavelet hl(x), x ∈ [0, 1) is defined as

hl(x) =

{
1 a(l) ≤ t < b(l)
−1 b(l) ≤ t < c(l)
0 otherwise,

(2.1)

where a(l) = k
m , b(l) = k+0.5

m , c(l) = k+1
m , l = 2j+k+1, j = 0, 1, 2, 3, . . . , J are dilation

parameters, m = 2j and k = 0, 1, 2, . . . 2j−1 are translation parameters. When k = 0,
j = 0, we have l = 2, which is the minimal value of l, and the maximal value of l is
2M where M = 2j , J is maximal level of resolution. For the uniform Haar wavelet,
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the wavelet-collocation method is applied. The collocation points for uniform Haar
wavelets are usually taken as xj = j−0.5

2M , j = 1, 2, 3, . . . , 2M .
The Riemann-Liouville fractional integral of the Haar scaling function and the

Haar wavelets are given as [28]

Pα,1(x) = Iαa(1)h1(x) =
1

Γ(α)

∫ x

a(1)

(x− s)α−1ds, α > 0 (2.2)

Pα,i(x) = Iαa hi(x)

=
1

Γ(α)


∫ x
a(i)

(x− s)α−1ds, a(i) ≤ x < b(i)∫ b(i)
a(i)

(x− s)α−1ds−
∫ x
b(i)

(x− s)α−1ds, b(i) ≤ x < c(i)∫ b(i)
a(i)

(x− s)α−1ds−
∫ c(i)
b(i)

(x− s)α−1ds, c(i) ≤ x.

Each function y ∈ L2[0, 1] can be expressed in terms of the Haar wavelets as

y(x) =

∞∑
l=1

blhl(x),

where bl’s are the Haar wavelets coefficients given by bl =
∫ 1

0
y(x)hl(x)dx.

The function y(x) can be approximated by the truncated Haar wavelets series:

y(x) ≈ ym(x) =

m∑
l=1

blhl(x). (2.3)

where l = 2j + k + 1, j = 0, 1, . . . , J, k = 0, 1, . . . 2j − 1.
In order to find the numerical approximation of a function, we put the Haar into a

discrete form. For this purpose, we utilized the collocation method. The collocation
points for the Haar wavelets are taken as xc(i) = i−0.5

2M , where i = 1, 2, . . . 2M . Each
function of two variables u(x, t) ∈ L2([a, b]× [a, b]) can be approximated as

u(x, t) ≈
m∑
l=1

m∑
i=1

cl,ihl(x)hi(t) = HT (x)CH(t),

where C is a m×m coefficients matrix which can be determined by the inner product
cl,i = 〈hl(x), 〈u(x, t), hi(t)〉〉.

Taking the collocation points as x(i) = i−0.5
m where i = 1, 2, . . . ,m, we define the

Haar matrix as

Hm×m =


h2(xc(1)) h1(xc(2)) . . . h1(xc(m))
h2(xc(1)) h2(xc(2)) . . . h2(xc(m))

...
...

. . .
...

hm(xc(1)) hm(xc(2)) . . . hm(xc(m))

 .

We can represent Eq. (2.3) in vector form as y = cH, where c = [c1, c2, . . . , cm]T .
The Haar coefficients bl can be determined by matrix inversion

b = yH−1, (2.4)

where H−1 is the inverse of H. Eq. (2.4) gives the Haar coefficients bl which are used
in Eq. (2.3) to get the solution y(x). Similarly, we can obtain the fractional order
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integration matrix P of Haar functions by substituting the collocation points in Eq.
(2.2) P (l, i) = pα,l(xc(i))), as

HP2M×2M =


p1(xc(1)) p1(xc(2)) . . . p1(xc(m))
p2(xc(1)) p2(xc(2)) . . . p2(xc(m))

...
...

. . .
...

pm(xc(1)) pm(xc(2)) . . . pm(xc(m))

 .

For instance, with α = 0.25, J = 2 (m = 8), we get the Haar wavelets operational
matrix of fractional integration

HP8×8 =

0.5516 0.7259 0.8248 0.8972 0.9554 1.0046 1.0474 1.0856

0.5516 0.7259 0.8248 0.8972 −0.1478 −0.4473 −0.60239 −0.7089

0.5516 0.7259 −0.2783 −0.5547 −0.14267 −0.0639 −0.0385 −0.0263

0 0 0 0 0.5516 0.7259 −0.2783 −0.5547

0.5516 −0.3772 −0.0754 −0.0265 −0.0142 −0.0090 −0.0063 −0.0046

0 0 0.5516 −0.3772 −0.0754 −0.0265 −0.01420 −0.0090

0 0 0 0 0.5516 −0.3772 −0.0754 −0.0265

0 0 0 0 0 0 0.5516 −0.3772


We derive another operational matrix of fractional integration to solve the frac-

tional boundary value problems. Let ζ > 0 and z : [0, ζ]→ R be a continuous function
and assume that Haar function has [0, ζ] as compact support, then

z(x)Iα0 h1(ζ) = z(x)

ζ∫
0

(ζ − s)αds, vα,ζ,1 = z(x)Cα,1, (2.5)

and

z(x)Iα0 hl(ζ) = z(x)[

b(l)∫
a(l)

(ζ−s)α−1ds−
a(l)∫
b(l)

(ζ−s)α−1ds], vα,ζ,1 = z(x)Cα,l, (2.6)

where Cα,1 = ζα

Γ(α+1) , Cα,l = 1
Γ(α+1)

[
(ζ − a(i))α − 2(ζ − b(i))α + (ζ − c(i))α

]
.

In particular, for ζ = 1, z(x) = x, α = 1.25,m = 8, we get

HV 1.25,x,1
8×8 =

0.8826 0.8826 0.8826 0.8826 0.8826 0.8826 0.8826 0.8826
0.1404 0.1404 0.1404 0.1404 0.1404 0.1404 0.1404 0.1404
0.0216 0.0216 0.0216 0.0216 0.0216 0.0216 0.0216 0.0216
0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590
0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047
0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061
0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091
0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248

 .
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2.2. Second-kind Chebyshev wavelets and operational matrix of general or-
der integration. The second-kind Chebyshev wavelets ψn,m(t) = ψ(k, n,m, t) have
four arguments k,m, n, t, which k can assume any positive integer, n = 1, 2, 3, . . . , 2k−1

, m is the degree of the second-kind Chebyshev polynomials and t is the normalized
time. They are defined on the interval [0, 1) as

ψn,m(t) =

{
2
k
2

√
2
πUm(2kt− 2n+ 1), n−1

2k−1 ≤ x ≤ n
2k−1

0, otherwise.
(2.7)

Um(t)’s are the second-kind Chebyshev polynomials of degree m which are orthogonal

with respect to the weight function w(t) =
√

1− t2 on the interval [−1, 1] and satisfy
the following recursive formula

U0(t) = 1, U1(t) = 2t,

Um+1(t) = 2tUm(t)− Um−1(t), m = 1, 2, 3, . . . .

The weight function w̃(t) = w(2t − 1) has to be dilated and translated as wn(t) =
w(2kt− 2n+ 1). A function f(x) ∈ L2(R) defined over [0, 1) can be expanded by the
second-kind Chebyshev wavelets as

f(x) =

∞∑
n=1

∞∑
m=1

cn,mψn,m(x), (2.8)

where

cn,m = 〈f(x), ψn,m(x)〉.
If the infinite series in Eq.(2.8) is truncated, then

f(x) ∼=
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x) = CTΨ(x), (2.9)

which the coefficients vector C and the second kind Chebyshev wavelet function vec-
tors Ψ(x) are m

′
= 2k−1M column vectors. For simplicity, we rewrite Eq. (2.9) as

f(x) ∼=
m
′∑

i=1

ciψi = CTΨ(x), (2.10)

where ci = cn,m, ψi(t) = ψn,m(t). The index i can be determined by the relation
i = M(n− 1) +m+ 1. Thus, we have

C = [c1, c2, c3, . . . , cm′ ]
T ,

Ψ(t) = [ψ1, ψ2, ψ3, . . . , ψm′ ]
T .

By taking the collocation points as ti = 2i−1
2kM

, i = 1, 2, 3, . . . , 2k−1M, we define the
second-kind Chebyshev wavelets matrix Φ(x)m′×m′ as

Φm′×m′ =
[
Ψ(

1

2m′
),Ψ(

3

2m′
), . . . ,Ψ(

2m′ − 1

2m′
)
]
,



CMDE Vol. 8, No. 4, 2020, pp. 610-638 615

where m′ = 2k−1M .
For example, when M = 4 and k = 2, the second-kind Chebyshev wavelets matrix

is expressed as

Φ8×8 =

1.5958 1.5958 1.5958 1.5958 0 0 0 0

−2.3937 −2.3937 −2.3937 −2.3937 0 0 0 0

1.9947 1.9947 1.9947 1.9947 0 0 0 0

−0.5984 −0.5984 −0.5984 −0.5984 0 0 0 0

0 0 0 0 1.5958 1.5958 1.5958 1.5958

0 0 0 0 −2.3937 −2.3937 −2.3937 −2.3937

0 0 0 0 1.9947 1.9947 1.9947 1.9947

0 0 0 0 −0.5984 −0.5984 −0.5984 −0.5984


.

In the same way, a function u(x, t) ∈ L2([0, 1]× [0, 1]) can be also approximated as

u(x, t) = ΨT (x)UΨ(t), (2.11)

which U is a m′ ×m′ matrix with uij = 〈ψi(x), 〈u(x, t), ψj(t)〉〉. We use the wavelet
collocation method to determine the coefficients ui,j .

Fractional integral formula of the Chebyshev wavelets in the Riemann-Liouville
sense is derived by means of the shifted second-kind Chebyshev polynomials U∗m,
which play an important role in dealing with the time fractional equations.

Theorem 2.1. [34] The fractional integral of a Chebyshev wavelet defined on the
interval [0, 1] with compact support [ n−1

2k−1 ,
n

2k−1 ] is given by

Iαψn,m(x) = (2.12)

0, x < n−1
2k−1 ,

1
Γ(α)2

k
2

√
2
π

m∑
r=0

m∑
i=r

r∑
j=0

Tm,n,ki,i−r
(−1)j

j+α ×

Cjrx
r−j
(
x− n−1

2k−1

)j+α
, n−1

2k−1 ≤ x ≤ n
2k−1 ,

1
Γ(α)2

k
2

√
2
π

m∑
r=0

m∑
i=r

r∑
j=0

Tm,n,ki,i−r
(−1)j

j+α ×

Cjrx
r−j
((

x− n−1
2k−1

)j+α
−
(
x− n

2k−1

)j+α)
, x > n

2k−1

where Tm,n,ki,i−r = (−1)m−r22i2r(k−1)(n−1)i−r
(

Γ(m+i+2)
Γ(m−i+1)Γ(2i+2)

)(
i!

(n−r)!r!

)
, Cjr = r!

j!(j−r)! .
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For instance, in the case of k = 2,M = 4, x = 0.6, α = 0.9, we obtain

I0.9Ψ8×1(0.6) =



0.838817891721642

0.045706956934399

0.290734994150959

0.021626272477045

0.208881853762857

−0.329813453309774

0.323368822612918

−0.217309447751042


.

where Ψ8×1 = (ψ1,0(x), ψ1,1(x), ψ1,2(x), ψ1,3(x), ψ2,0(x), ψ2,1(x), ψ12,2(x), ψ2,3(x))T .
We can obtain the fractional order integration matrix CPαm′×m′ = Iαψn,m(x) by

substituting the collocation points in Eq. (2.12) as:

CPα2k−1M×2k−1M =
Iαψ1,0(x(1)) Iαψ1,0(x(2)) . . . Iαψ1,0(x(2k−1M))
Iαψ1,1(x(1)) Iαψ1,1(x(2)) . . . Iαψ1,1(x(2k−1M))

...
...

. . .
...

Iαψ2k−1,M (x(1)) Iαψ2k−1,M (x(2)) . . . Iαψ2k−1,M (x(2k−1M))

 .

In particular, we fix k = 2,M = 4 and α = 0.9, then

CP 0.9
8×8 =

0.1368 0.3678 0.5825 0.7885 0.8517 0.8165 0.7939 0.7771

−0.2377 −0.4452 −0.3985 −0.1245 0.0545 0.0337 0.0246 0.0194

0.2789 0.2423 0.0032 0.0615 0.2996 0.2783 0.2680 0.2612

−0.2570 −0.0232 −0.0530 −0.2259 0.0274 0.0148 0.0104 0.0081

0 0 0 0 0.1368 0.3678 0.5825 0.7885

0 0 0 0 −0.2377 −0.4452 −0.3985 −0.1245

0 0 0 0 0.2789 0.2423 0.0032 0.0615

0 0 0 0 −0.2570 −0.0232 −0.0530 −0.2259


.

We derive another operational matrix of fractional integration to solve the frac-
tional boundary value problems. Let η > 0 and g : [0, η] → R be a continuous
function, put

g(x)Iαψn,m(η) = vα,η. (2.13)

We define a matrix V by substituting the collocation points xi = 2i−1
2kM

, i = 1, 2, . . . , 2k−1M
in Eq. (2.13),

CV
α,η,g(x)

2k−1M×2k−1M
=

g(x1)Iαψ1,0(η) g(x2)Iαψ1,0(η) . . . g(x2k−1M )Iαψ1,0(η)
g(x1)Iαψ1,1(η) g(x2)Iαψ1,1(η) . . . g(x2k−1M )Iαψ1,1(η)

...
...

. . .
...

g(x1)Iαψ2k−1,M−1(η) g(x2)Iαψ2k−1,M−1(η) . . . g(x2k−1M )Iαψ2k−1,M−1(η)

 .
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In particular, for η = 1, g(x) = x, α = 0.9, k = 2 and M = 4, we get

CV 0.9,1,x
8×8 =

0.0374 0.1112 0.1870 0.2618 0.3366 0.4114 0.4862 0.5610

−0.0083 −0.0249 −0.0416 −0.0582 −0.0748 −0.0914 −0.1080 −0.1247

0.0125 0.0374 0.0623 0.0873 0.1112 0.1371 0.1621 0.1870

−0.0033 −0.01007 −0.0166 −0.0233 −0.0299 −0.0366 −0.0432 −0.0499

0.0125 0.0374 0.0623 0.0873 0.1122 0.1371 0.1621 0.1870

−0.0083 −0.0249 −0.0416 −0.0582 −0.0748 −0.0914 −0.1080 −0.1247

0.0042 0.0125 0.0208 0.0291 0.0374 0.0457 0.0540 0.0623

−0.0033 −0.0100 −0.0166 −0.0233 −0.0299 −0.0366 −0.0432 −0.0499


.

3. Convergence

3.1. Haar wavelets.

Theorem 3.1. Consider the functions um(x, t) obtained by the Haar wavelet with
approximation u(x, t). Then, ‖u(x, t) − um(x, t)‖E ≤ K√

3m
, where ‖u(x, t)‖E =(∫ 1

0

∫ 1

0
u2(x, t)dxdt

) 1
2

.

Proof. Suppose um(x, t) is the following approximation of u(x, t),

um(x, t) =

m−1∑
n=0

m−1∑
l=0

unlhn(x)hl(t).

Then we have

u(x, t)− um(x, y) =

∞∑
n=m

∞∑
l=m

unlhn(x)hl(t) =

∞∑
n=2p+1

∞∑
l=2p+1

unlhn(x)hl(t).

The orthogonality of the sequence hi(x) on [0, 1) implies that

hl(.) = 2
j
2h(2j(.)− k). (3.1)

Therefore

||u(x, t)− um(x, t)||2E =

∫ 1

0

∫ 1

0

(u(x, t)− um(x, t))2dxdt (3.2)

= 2j
∞∑

n=2p+1

∞∑
l=2p+1

∞∑
n′=2p+1

∞∑
l′=2p+1

unlun′l′

(∫ 1

0

hn(x)hn′(x)dx

)

×

(∫ 1

0

hl(t)hl′(t)dt

)
= 2j

∞∑
n=2p+1

∞∑
l=2p+1

u2
nl,
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where unl =

〈
hn(x),

〈
u(x, t), hl(t)

〉〉
.

According to Eq. (2.1) and definition inner production, we have〈
u(x, t), hl(t)

〉
=

∫ 1

0

u(x, t)hl(t)dt = 2
j
2

(∫ k−0.5

2j

k−1

2j

u(x, t)dt−
∫ k

2j

k−0.5

2j

u(x, t)dt

)
.

By using mean value theorem of integrals

∃t1, t2 :
k − 1

2j
≤ t1 <

k − 0.5

2j
,

k − 0.5

2j
≤ t2 <

k

2j
,

so that〈
u(x, t), hl(t)

〉
= 2

j
2

((k − 0.5

2j
− k − 1

2j
)
u(x, t1)−

( k
2j
− k − 0.5

2j
)
u(x, t2)

)
=

2
j
2

2j+1

(
u(x, t1)− u(x, t2)

)

unl =

〈
hn(x),

1

2
j
2 +1

(u(x, t1)− u(x, t2))

〉
=

1

2j+1

∫ 1

0

hn(x)(u(x, t1)− u(x, t2))dx

=
2
j
2

2
j
2 +1

(∫ k−0.5

2j

k−1

2j

u(x, t1)dx−
∫ k

2j

k−0.5

2j

u(x, t1)dx−
∫ k−0.5

2j

k−1

2j

u(x, t2)dx+

∫ k

2j

k−0.5

2j

u(x, t2)dx

)
.

By using mean value theorem of integrals again

∃x1, x2, x3, x4 ::
k − 1

2j
≤ x1, x2 <

k − 0.5

2j
,

k − 0.5

2j
≤ x3, x4 <

k

2j

unl =
1

2

{
(
k − 0.5

2j
− k − 1

2j
)u(x1, t1)− (

k−
j
− k − 0.5

2j
)u(x2, t1)−

(
k − 0.5

2j
− k − 1

2j
)u(x3, t2) + (

k

2j
− k − 0.5

2j
)u(x4, t2)

}
=

1

2j+2

{
(u(x1, t1)− u(x2, t1))− (u(x3, t2)− u(x4, t2))

}

u2
nl =

1

22j+4

{
(u(x1, t1)− u(x2, t1))− (u(x3, t2)− u(x4, t2))

}2

.

By using mean value theorem of derivatives

∃ξ1, ξ2 : x1 ≤ ξ1 < x2, x3 ≤ ξ2 < x4

so that

u2
nl ≤ 1

22j+4

{
(x2 − x1)2[

∂u(ξ1, t1)

∂x
]2 + (x4 − x3)2[

∂u(ξ1, t1)

∂x
]2 +

2(x2 − x1)(x4 − x3)

∣∣∣∣∂u(ξ1, t1)

∂x

∣∣∣∣∣∣∣∣∂u(ξ2, t2)

∂x

∣∣∣∣}.
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We assume that ∂u(x,t)
∂x is continuous and bounded on (0, 1)× (0, 1), then

∃K > 0,∀x, t ∈ (0, 1)× (0, 1),

∣∣∣∣∂u(x, t)

∂x

∣∣∣∣ ≤ K.
u2
nl ≤

(
1

22j+4

)
4K2

22j
=

4K2

24j+4
(3.3)

substituting Eq. (3.3) into Eq. (3.2), we have

||u(x, t)− um(x, t)||2E =

∞∑
j=p+1

( 2j+1−1∑
n=2j

2j+1−1∑
n=2j

u2
nl

)
≤

∞∑
j=p+1

( 2j+1−1∑
n=2j

2j+1−1∑
n=2j

4K2

24j+4

)

= 4K2
∞∑

j=p+1

( 2j+1−1∑
n=2j

2j+1−1∑
n=2j

1

24j+4

)

=
K2

3

1

4p+1
=

K2

3m2
.

Thus, ‖u(x, t) − um(x, t)‖E ≤ K√
3m

and so ‖u(x, t) − um(x, t)‖E → 0 when m → ∞.

By using a similar procedure, we can show that ‖ur+1(x, t) − umr+1(x, t)‖E ≤ K√
3m

which implies that error between the exact and approximate solution at the (r+1)-th
iteration is inversely proportional to the maximal level of resolution. This shows that
umr+1(x, t) converges to ur+1(x, t) as m→∞. Since ur+1(x, t) is obtained at (r + 1)-
th iteration of Picard technique, we conclude that ur+1(x, t) converges to u(x, t) as
r →∞. Thus, limm,r→∞ umr+1(x, t) = u(x, t). �

3.2. Second-kind Chebyshev wavelets.

Theorem 3.2. [35] Let f(x) be a second-order derivative square-integrable function
defined on [0, 1) with bounded second order derivative, say |f ′′(x)| ≤ B for some
constant B, then
(i) f(x) can be expanded as an infinite sum of the second kind Chebyshev wavelets
and the series converges to f(x) uniformly, that is

f(x) =

∞∑
n=1

∞∑
m=1

cnmψn,m(x),

where cnm = 〈f(x), ψn,m(x)〉.
(ii)

σf,k,M ≤
√
πB

23

( ∞∑
n=2k−1+1

1

n5

∞∑
m=M

1

(m− 1)4

) 1
2

,

where σf,k,M =

(∫ 1

0
|f(x)−

2k−1∑
n=1

M−1∑
m=0

cnmψn,m(x)|2wn(x)dx

) 1
2

.
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Theorem 3.3. [34] Supposing that u(x, t) ∈ L2(R2) is a continuous function defined

on [0, 1) × [0, 1), ∂2u
∂x2 , ∂2u

∂t2 and ∂4u
∂x2∂t2 are bounded with some positive constant B.

Then for any positive integer k:

i) the series

2k−1∑
n=1

2k−1∑
n′=1

∞∑
m=0

∞∑
m′=0

dn,m,n′ ,m′ψn,m(x)ψn′ ,m′ (t)

convergences to u(x, t) uniformly in L2(R2), where

dn,m,n′ ,m′ =< u(x, t), ψn,m(x)ψn′ ,m′ (t) >L2
w([0,1]×[0,1]) .

ii)

σ2
µ,k,M <

(Bπ)2

26

2k−1∑
n=1

1

n3

2k−1∑
n′=1

1

n′3

∞∑
m=M

1

m2(m− 1)2

+
(Bπ)2

215

2k−1∑
n=1

1

n5

2k−1∑
n′=1

1

n′5

∞∑
m=2

1

m2(m− 1)2

∞∑
m′=M

1

m′2(m′ − 1)2
,

where

σµ,k,M =

(∫ 1

0

∫ 1

0

∣∣∣∣∣u(x, t)−
2k−1∑
n=1

2k−1∑
n′=1

∞∑
m=0

∞∑
m′=0

dn,m,n′ ,m′ψn,m(x)ψn′ ,m′ (t)

∣∣∣∣∣
2

wn(x)wn′ (t)dxdt

) 1
2

.

Since k, n and m are positive finite constants, from Theorems (3.2), (3.3), we
conclude that ur+1(x, t)→ u(x, t) as r →∞.

4. Description of the proposed methods

4.1. The Haar wavelets method. In this section, we describe the procedure of
implementing the method for solving singular nonlinear fractional partial differential
equation (SPDE). First, we convert SPDE into a discrete fractional PDE by the
Picard technique. Thus, we solve it to obtain the solution of the problem by the Haar
wavelet operational matrix method.

Consider the following nonlinear singular fractional partial differential equation:

∂αu

∂tα
− a(x)

∂βu

∂xβ
+ d(x)up = f(x, t), (4.1)

0 < α ≤ 1, 1 < β ≤ 2, p > 1,

with initial and boundary conditions:

u(x, 0) = g1(x), 0 ≤ x ≤ 1,

u(0, t) = Y1(t), u(1, t) = Y2(t), t ∈ [0, 1],

where the a(x) or d(x) maybe have singularity at the point x = 0.
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Table 1. Absolute error of |u5(x, t)−u(x, t)|, for different values of
α, β when they tend to 1, 2 respectively at the 5th iteration, J = 4
in Example (5.1) using HWCM

(x, t) α = 0.7 α = 0.95 α = 0.95 α = 1 α = 1 method[30]

β = 1.7 β = 1.95 β = 2 β = 2 β = 2

( 1
64 ,

1
64 ) 4.7655e-03 4.3028e-04 1.7837e-05 1.7260e-06 7.7254e-03

( 5
64 ,

5
64 ) 4.1936e-03 2.6200e-04 1.1640e-04 3.1004e-06 7.0041e-03

( 9
64 ,

9
64 ) 9.9047e-03 5.4967e-04 2.5370e-04 1.2849e-06 6.5127e-03

( 13
64 ,

13
64 ) 1.1744e-02 8.7121e-04 3.9266e-04 2.5508e-07 1.2543e-03

( 17
64 ,

17
64 ) 1.3552e-02 1.1836e-03 5.1850e-04 1.4435e-07 2.2215e-04

( 21
64 ,

21
64 ) 1.5329e-02 1.4910e-03 6.3004e-04 2.9942e-07 3.0219e-04

( 25
64 ,

25
64 ) 1.7075e-02 1.7820e-03 7.2762e-04 3.8982e-07 4.0546e-04

( 29
64 ,

29
64 ) 2.4886e-02 2.0631e-03 8.1290e-04 4.8944e-07 3.7491e-04

( 33
64 ,

33
64 ) 2.2391e-02 2.3308e-03 8.8798e-04 6.4271e-07 2.7741e-04

( 37
64 ,

37
64 ) 1.9748e-02 2.5897e-03 9.5451e-04 8.8990e-07 2.5123e-04

( 41
64 ,

41
64 ) 1.6960e-02 2.8387e-03 1.3726e-03 1.2652e-06 2.1752e-04

( 45
64 ,

45
64 ) 1.4027e-02 3.0805e-03 1.3434e-03 1.7799e-06 2.0514e-04

( 49
64 ,

49
64 ) 1.0951e-02 3.3151e-03 1.2763e-03 2.3957e-06 1.7517e-05

( 53
64 ,

53
64 ) 7.7348e-03 1.2613e-03 6.2277e-04 2.9841e-06 1.4721e-05

( 57
64 ,

57
64 ) 4.3814e-03 7.3475e-04 1.3665e-04 3.1817e-06 1.9541e-06

( 61
64 ,

61
64 ) 8.9485e-03 1.8182e-04 4.6175e-05 1.9165e-06 1.1449e-07

Applying the Picard technique [4] to Eq. (4.1), we get

∂αur+1

∂tα
− a(x)

∂βur+1

∂xβ
= f(x, t, ur), (4.2)

0 < α ≤ 1, 1 < β ≤ 2, , r ≥ 1

with the initial and boundary conditions:

ur+1(x, 0) = g1(x), 0 ≤ x ≤ 1,

ur+1(0, t) = Y1(t), ur+1(1, t) = Y2(t), t ∈ [0, 1],

where f(x, t, ur) := f(x, t)− d(x)upr .
Applying the Haar wavelet method to Eq. (4.2), we approximate the higher order

term by the Haar wavelet series as

∂βur+1

∂xβ
=

m∑
l=1

m∑
p=1

cr+1
lp hl(x)hp(t) = HT (x)Cr+1H(t), (4.3)
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Table 2. Absolute error of |u5(x, t) − u(x, t)|, for different values
of α, β when they tend to 1, 2 respectively at the 5th iteration, k =
2,M = 8 in Example (5.1), using CWCM

(x, t) α = 0.5 α = 0.95 α = 1 α = 1 method[30]

β = 1.75 β = 1.95 β = 2 β = 2

( 1
32 ,

1
32 ) 1.0235e-03 2.9795e-04 9.8797e-13 4.2154e-02

( 3
32 ,

3
32 ) 2.7733e-03 7.6429e-04 6.3487e-12 4.0041e-02

( 5
32 ,

5
32 ) 3.8470e-03 8.8657e-04 3.7582e-11 6.1784e-03

( 7
32 ,

7
32 ) 4.4533e-03 8.4230e-04 2.3422e-10 1.9223e-03

( 9
32 ,

9
32 ) 4.5295e-03 5.9850e-04 9.6780e-10 2.7205e-04

( 11
32 ,

11
32 ) 4.0359e-03 1.4470e-04 2.9476e-09 2.3709e-04

( 13
32 ,

13
32 ) 2.8440e-03 5.9145e-04 7.3681e-09 2.6057e-04

( 15
32 ,

15
32 ) 9.8309e-04 1.5515e-03 1.6114e-08 4.0174e-04

( 17
32 ,

17
32 ) 2.0000e-03 3.0606e-03 3.1917e-08 3.4774e-04

( 19
32 ,

19
32 ) 5.7003e-03 4.7506e-03 5.8314e-08 3.6823e-04

( 21
32 ,

21
32 ) 1.0550e-02 6.9530e-03 9.8903e-08 1.7064e-04

( 23
32 ,

23
32 ) 1.6528e-02 9.6129e-03 1.5538e-07 3.7981e-04

( 25
32 ,

25
32 ) 2.3668e-02 1.2753e-02 2.2322e-07 2.9751e-04

( 27
32 ,

27
32 ) 3.1955e-02 1.6371e-02 2.8391e-07 1.4021e-04

( 29
32 ,

29
32 ) 4.1299e-02 2.0420e-02 2.9268e-07 1.0691e-05

( 31
32 ,

31
32 ) 5.1541e-02 2.4899e-02 1.6170e-07 1.0037e-05

applying the fractional integral operator Iβx on Eq. (4.3) gives

ur+1(x, t) = (HP 2
x )TCr+1H(t) + p(t)x+ q(t), (4.4)

where p(t) and q(t) are functions of t. Using the boundary conditions and Eqs.
(4.3),(4.4), we get

q(t) = Y1(t)

p(t) = −
m∑
l=1

m∑
p=1

cr+1
lp (Iβxhl(x))hp(t) + Y2(t)− Y1(t).

Eq. (4.4) can be written as

ur+1(x, t) = (HP βx )TCr+1H(t)− x
[
(HP βx (1))TCr+1H(t) (4.5)

+ Y2(t)− Y1(t)
]

+ Y1(t).
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Table 3. Comparison of the absolute error |u5(x, t) − u(x, t)|, for
α = 1, β = 2 at the 5th iteration, k = 2,M = 8, J = 3 in Example
(5.1)

(x, t) EHWCM ECWCM EMHPM [30]

( 1
32 ,

1
32 ) 1.1842e-05 9.8797e-13 4.2154e-02

( 3
32 ,

3
32 ) 1.3220e-05 6.3487e-12 4.0041e-02

( 5
32 ,

5
32 ) 2.2711e-07 3.7582e-11 6.1784e-03

( 7
32 ,

7
32 ) 8.1053e-07 2.3422e-10 1.9223e-03

( 9
32 ,

9
32 ) 7.2534e-07 9.6780e-10 2.7205e-04

( 11
32 ,

11
32 ) 1.5311e-06 2.9476e-09 2.3709e-04

( 13
32 ,

13
32 ) 7.2014e-07 7.3681e-09 2.6057e-04

( 15
32 ,

15
32 ) 1.3386e-06 1.6114e-08 4.0174e-04

( 17
32 ,

17
32 ) 1.0314e-06 3.1917e-08 3.4774e-04

( 19
32 ,

19
32 ) 8.2611e-07 5.8314e-08 3.6823e-04

( 21
32 ,

21
32 ) 1.6654e-06 9.8903e-08 1.7064e-04

( 23
32 ,

23
32 ) 5.4611e-07 1.5538e-07 3.7981e-04

( 25
32 ,

25
32 ) 2.7450e-06 2.2322e-07 2.9751e-04

( 27
32 ,

27
32 ) 1.6417e-06 2.8391e-07 1.4021e-04

( 29
32 ,

29
32 ) 6.1593e-07 2.9268e-07 1.0691e-05

( 31
32 ,

31
32 ) 3.8078e-06 1.6170e-07 1.0037e-05

For simplicity, let

S(x, t) = f(x, t, ur) =

m∑
l=1

m∑
p=1

mlphl(x)hp(t) = HT (x)MH(t), (4.6)

where mlp = 〈hl(x), 〈S(x, t), hp(t)〉〉. Substituting Eqs. (4.6),(4.3) in Eq. (4.1) we
obtain

∂αur+1

∂tα
= a(x)HT (x)Cr+1H(t) +HT (x)MH(t), (4.7)

We apply fractional integral operator Iαt to Eq. (4.7) and use the initial conditions
to obtain

ur+1(x, t) = a(x)HT (x)Cr+1(HPαt ) +HT (x)M(HPαt ) + g1(x). (4.8)

Let K(x, t) = −g1(x) + x(Y2(t)− Y1(t)) + Y1(t). From Eqs. (4.8),(4.5)

(HP βx )TCr+1H(t)− x
[
(HP βx (1))TCr+1H(t)

]
+K(x, t) (4.9)

= a(x)HT (x)Cr+1(HPαt ) +HT (x)M(HPαt ).
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Table 4. Absolute error of |u6(x, t)−u(x, t)|, for different values of
α, β when they tend to 1, 2 respectively at the 6th iteration, J = 4
in Example (5.2), using HWCM

(x, t) α = 0.7 α = 0.8 α = 1 α = 1 α = 1 method[30]

β = 1.7 β = 1.8 β = 1.95 β = 2 β = 2

( 1
64 ,

1
64 ) 3.6794e-03 1.9186e-03 2.6858e-04 6.5242e-06 4.1257e-02

( 5
64 ,

5
64 ) 1.6448e-02 1.8094e-02 3.2705e-03 1.2905e-05 4.1007e-02

( 9
64 ,

9
64 ) 2.9277e-02 2.6402e-02 5.2280e-03 4.1986e-06 3.0574e-02

( 13
64 ,

13
64 ) 4.1427e-02 3.3969e-02 7.0957e-03 1.1843e-05 2.9743e-02

( 17
64 ,

17
64 ) 5.2605e-02 4.0971e-02 8.9773e-03 1.2676e-05 2.7714e-02

( 21
64 ,

21
64 ) 1.1756e-01 4.7314e-02 1.0664e-03 1.1320e-05 2.0468e-02

( 25
64 ,

25
64 ) 1.2149e-01 5.3088e-02 1.2272e-03 9.6613e-06 1.9724e-02

( 29
64 ,

29
64 ) 2.9076e-01 5.8305e-02 1.3684e-03 8.1439e-06 1.7752e-02

( 33
64 ,

33
64 ) 2.4825e-01 8.1434e-02 9.1821e-03 6.7756e-06 1.4029e-02

( 37
64 ,

37
64 ) 2.0626e-01 7.9743e-02 8.4079e-03 5.4982e-06 9.0051e-03

( 41
64 ,

41
64 ) 1.6487e-02 7.7926e-02 7.6241e-03 4.2648e-06 7.8057e-03

( 45
64 ,

45
64 ) 1.2416e-02 7.5991e-02 6.8316e-03 3.1086e-06 4.6721e-03

( 49
64 ,

49
64 ) 8.4215e-03 7.3946e-02 6.0310e-03 2.3351e-06 2.2147e-03

( 53
64 ,

53
64 ) 4.5107e-03 7.1799e-02 1.9388e-03 2.6056e-06 1.6858e-03

( 57
64 ,

57
64 ) 5.0256e-03 3.2819e-03 1.1079e-03 3.1908e-06 9.6858e-04

( 61
64 ,

61
64 ) 6.9186e-04 6.1649e-04 2.7489e-04 3.2617e-06 7.6858e-04

In discrete form, using Eq. (4.9) and collocation points , we have the matrix form

(HP βx )TCr+1H −H V β,1,xCr+1H (4.10)

−AHTCr+1(HPαt )−HTM(HPαt ) +K = 0,

where H is a m×m Haar matrix, HV β,1,x = xIβ1H
T is m×m fractional integration

matrix for boundary value problem and HP βx = IβxH
T ,H Pαt = Iαt H are m × m

matrices of fractional integration of the Haar wavelets. M is a m × m coefficients
matrix determined by inner products mlp = 〈hl(x), 〈S(x, t), hp(t)〉〉.

Let Q := (AHT )−1 is a m×m matrix, where A is a diagonal matrix and is given
by

A =


a(x(1)) 0 . . . 0

0 a(x(2)) . . . 0
...

...
. . .

...
0 0 . . . a(x(m))

 .
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Table 5. Comparison of the uCWCM (at the 5th iteration), k =
2,M = 8, α = 1 and β = 2, the uHWCM (J = 3), the exact solution
and the MHPM [30] approximate solution in Example (5.2)

(x, t) uHWCM uCWCM uExact EHWCM ECWCM EMHPM [30]

( 1
32 ,

1
32 ) 1.0905e-04 5.7490e-05 5.7445e-05 5.1606e-05 4.5476e-08 3.6472e-04

( 3
32 ,

3
32 ) 1.4831e-03 1.3878e-03 1.3877e-03 9.5304e-05 1.4538e-08 1.5483e-03

( 5
32 ,

5
32 ) 5.7102e-03 5.8129e-03 5.8129e-03 1.0267e-04 1.0483e-08 1.2287e-03

( 7
32 ,

7
32 ) 1.4540e-02 1.4564e-02 1.4564e-02 2.3910e-05 4.4076e-09 1.0073e-03

( 9
32 ,

9
32 ) 2.8419e-02 2.8477e-02 2.8477e-02 5.7525e-05 8.4568e-09 4.5571e-03

( 11
32 ,

11
32 ) 4.8097e-02 4.8141e-02 4.8141e-02 4.3717e-05 6.3251e-09 7.1737e-03

( 13
32 ,

13
32 ) 7.3950e-02 7.3983e-02 7.3983e-02 3.2961e-05 1.8287e-08 7.0063e-03

( 15
32 ,

15
32 ) 1.0629e-01 1.0632e-01 1.0632e-01 3.1537e-05 5.2295e-08 4.2133e-03

( 17
32 ,

17
32 ) 1.4536e-01 1.4539e-01 1.4539e-01 2.8429e-05 4.9514e-07 2.8067e-04

( 19
32 ,

19
32 ) 1.9137e-01 1.9138e-01 1.9138e-01 1.2920e-05 1.6857e-07 5.2674e-04

( 21
32 ,

21
32 ) 2.4440e-01 2.4443e-01 2.4443e-01 3.0522e-05 3.6552e-08 5.1135e-04

( 23
32 ,

23
32 ) 3.0467e-01 3.0466e-01 3.0466e-01 4.6925e-06 8.0461e-09 2.3357e-04

( 25
32 ,

25
32 ) 3.7214e-01 3.7217e-01 3.7217e-01 2.7440e-05 7.9465e-09 1.9736e-05

( 27
32 ,

27
32 ) 4.4701e-01 4.4702e-01 4.4702e-01 4.1784e-06 8.3986e-09 1.6483e-05

( 29
32 ,

29
32 ) 5.2930e-01 5.2928e-01 5.2928e-01 2.8561e-05 3.4844e-08 1.0247e-05

( 31
32 ,

31
32 ) 6.1894e-01 6.1900e-01 6.1900e-01 5.2938e-05 1.3780e-07 9.7433e-06

So Eq (4.10) can be written as

Q((HP βx )T −H V β,1,x)Cr+1 (4.11)

−Cr+1(HPαt )H−1 +Q(K −HTM(HPαt )) = 0,

which is Sylvester equation. Solving Eq. (4.11) for Cr+1, and substituting in Eq. (4.4
or 4.8), we get solution ur+1 at the collocation points.
In particular, given an initial approximation u0(x, t), we get a linear fractional singular
problem in u1(x, t) by substituting r = 0 in Eq. (4.1), which is solved by above
procedure to get u1(x, t) at the collocation points.

4.2. The second-kind Chebyshev wavelets method. Similarly, we describe the
method of solving the singular fractional nonlinear partial differential equations us-
ing the second-kind Chebyshev wavelets. The first step is converting the singular
fractional nonlinear partial differential equations to a system of linear equations by
the Picard technique. Then, we solve the obtained linear system by the second-kind
Chebyshev wavelets operational matrix method. We apply the Picard iteration tech-
nique to Eq. (1.1):
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∂αur+1

∂tα
− a(x)

∂βur+1

∂xβ
= f(x, t, ur), (4.12)

0 < α ≤ 1, 1 < β ≤ 2, , r ≥ 1

with the initial and boundary conditions:

ur+1(x, 0) = g1(x), 0 ≤ x ≤ 1,

ur+1(0, t) = Y1(t), ur+1(1, t) = Y2(t), t ∈ [0, 1],

where f(x, t, ur) = f(x, t)− d(x)upr .
For applying the second-kind Chebyshev wavelets collocation method to Eq. (4.12),

we suppose

∂βur+1

∂xβ
=

m′∑
l=1

m′∑
p=1

cr+1
lp ψl(x)ψp(t) = ΨT (x)Cr+1Ψ(t). (4.13)

Applying the fractional integral operator Iβx on Eq. (4.13), we get

ur+1(x, t) = (CP 2
x )TCr+1Ψ(t) + p(t)x+ q(t), (4.14)

where p(t) and q(t) are functions of t. Using the boundary conditions and Eqs. (4.14,
4.13), we get

q(t) = Y1(t),

p(t) = −(CP 2(1))TCr+1Ψ(t) + Y2(t)− Y1(t).

Eq. (4.14) can be rewritten as:

ur+1(x, t) = (CP β)TCr+1H(t)− x
[
(CP β(1))TCr+1H(t) (4.15)

+ Y2(t)− Y1(t)
]

+ Y1(t).

For simplicity, let

S(x, t) = f(x, t, ur) =

m′∑
l=1

m′∑
p=1

mlpψl(x)ψp(t) = ΨT (x)MΨ(t), (4.16)

where mlp = 〈hl(x), 〈S(x, t), hp(t)〉〉. Substituting Eqs. (4.16, 4.13) in Eq. (4.12) we
obtain

∂αur+1

∂tα
= a(x)ΨT (x)Cr+1Ψ(t) + ΨT (x)MΨ(t). (4.17)

Apply fractional integral operator Iαt to Eq. (4.17) and use the initial conditions to
obtain

ur+1(x, t) = a(x)ΨT (x)Cr+1(CPαt ) + ΨT (x)M(CPαt ) + g1(x). (4.18)

Let K(x, t) = −g1(x) + x(Y2(t)− Y1(t)) + Y1(t). From Eqs. (4.18, 4.15) we have

(CP β)TCr+1Ψ(t)− x
[
(CP β(1))TCr+1Ψ(t)

]
+K(x, t) (4.19)

= a(x)ΨT (x)Cr+1(CPαt ) + ΨT (x)M(CPαt ).
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In discrete form, using Eq. (4.19) and collocation points, we have the matrix form

(CP β)TCr+1Ψ−C V β,1,f(x)Cr+1Ψ− (4.20)

AΨTCr+1(CPαt )−ΨTM(CPαt ) +K = 0,

where Ψ is a 2k−1M × 2k−1M second kind Chebyshev matrix, CV β,1,x = xIβ(Ψ(1))T

is 2k−1M × 2k−1M fractional integration matrix for boundary value problems and
CP β = Iβ(Ψ),C Pα = Iα(Ψ) are 2k−1M × 2k−1M matrices of fractional integration
of the second-kind Chebyshev wavelets. M is a 2k−1M × 2k−1M coefficients matrix
determined by inner products mlp = 〈hl(x), 〈S(x, t), hp(t)〉〉. Let Q := (AΨT )−1 is a
2k−1M × 2k−1M matrix, where A is a diagonal matrix and is given by

A =


a(x(1)) 0 . . . 0

0 a(x(2)) . . . 0
...

...
. . .

...
0 0 . . . a(x(2k−1M))

 .

So we rewrite Eq (4.20) as

Q((CP β)T −C V β,1,f(x))Cr+1 − (4.21)

Cr+1(CPαt )Ψ−1 +Q(K −ΨTM(CPαt )) = 0,

which is the Sylvester equation. Solving Eq. (4.21) for Cr+1, and substituting in Eqs.
(4.14 or 4.18), we get the solution ur+1 at the collocation points.

In particular, given an initial approximation u0(x, t), we get a linear fractional
singular problem in u1(x, t) by substituting r = 0 in Eq. (4.12), which is solved by
above procedure to get u1(x, t) at the collocation points.

5. Experiments and results

In this section we use the HWCM(Haar Wavelets Collocation Method) and CWCM(Chebyshev
Wavelets Collocation Method) for solving the nonlinear singular fractional differential
equations. We provide two examples to illustrate the methods.

Example 5.1. Consider the singular fractional nonlinear partial differential equation:

∂αu

∂tα
− (

1

sin(x)
+
x

3
)
∂βu

∂xβ
− u2 = f(x, t) (5.1)

with initial and boundary condition:

u(x, 0) = sin(x), u(0, t) = 0,

u(1, t) = etsin(1), 0 ≤ x, t ≤ 1.

Exact solution for α = 1, β = 2 is u(x, t) = etsin(x) and f(x, t) = 1
3e
t(3−3et(sin(x))2+

(x+ 3)sin(x)).
We use u0 = sin(x) as an initial approximation and apply our techniques to get

the approximate solution of this singular problem and describe the procedure of im-
plementation in more details, which enable the readers to understand the method
more efficiently.
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Figure 1. The Haar wavelets collocation approximate solutions, ex-
act solution and absolute errors for α = 1, β = 2, J = 5 in Example
(5.1)

Step 1. Applying the Picard technique to Eq. (5.1), we get

∂αur+1(x, t)

∂tα
− (

1

sin(x)
+
x

3
)
∂βur+1(x, t)

∂xβ
(5.2)

−u2
r(x, t) =

1

3
et(3− 3et(sin(x))2 + (x+ 3)sin(x)),
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Figure 2. The Haar wavelets collocation approximate solution, ex-
act solution and absolute error for α = 1, β = 2, J = 2 in Example
(5.1)
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Figure 3. The Haar wavelets collocation approximate solution, ex-
act solution and absolute error for α = 1, β = 2, J = 3 in Example
(5.1)
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with initial and boundary conditions:

ur+1(x, 0) = sin(x), ur+1(0, t) = 0,

ur+1(1, t) = etsin(1), 0 ≤ x, t ≤ 1.



630 A. MOHAMMADI, N. AGHAZADEH, AND SH. REZAPOUR

Figure 4. The Haar wavelets collocation approximate solution, ex-
act solution and absolute error for α = 1, β = 2, J = 4 in Example
(5.1)
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Figure 5. The second-kind Chebyshev wavelets approximate solu-
tion, exact solution and absolute error for α = 1, β = 2, k = 2,M = 4
in Example (5.1)
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Step 2. Applying the second-kind Chebyshev wavelets method to Eq. (5.2), we
have

∂βur+1

∂xβ
=

m′∑
l=1

m′∑
p=1

cr+1
lp ψl(x)ψp(t) = ΨT (x)Cr+1Ψ(t), (5.3)
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Figure 6. The second-kind Chebyshev wavelets approximate solu-
tion, exact solution and absolute error for α = 1, β = 2, k = 2,M = 8
in Example (5.1)
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Figure 7. The second-kind Chebyshev wavelets approximate solu-
tion, exact solution and absolute errors for α = 1, β = 2, k = 2,M =
12 in Example (5.1)
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Applying the fractional integration operator Iβx to Eq. (5.3) and using initial and
boundary conditions, we have

ur+1(x, t) = (CP βx )TCr+1Ψ(t)− x
[
(CP β(1))TCr+1Ψ(t) + etsin(1)

]
, (5.4)
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Figure 8. The second-kind Chebyshev wavelets approximate solu-
tions, exact solution and absolute errors for α = 1, β = 2, k = 2,M =
8 in Example (5.1)
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Rewriting Eq. (5.4)

ur+1(x, t) =
[
(CP βx )T − x(CP β(1))T

]
Cr+1Ψ(t) + xetsin(1), (5.5)

where x(CP β(1)) is the fractional integration matrix for boundary value problems
introduced in Eq. (2.13).
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Step 3. We set S(x, t) = u2
r(x, t) + 1

3e
t(3− 3et(sin(x))2 + (x+ 3)sin(x)), so

S(x, t) =

m′∑
l=1

m′∑
p=1

mlpψl(x)ψp(t) = ΨT (x)MΨ(t), (5.6)

where mlp = 〈hl(x), 〈S(x, t), hp(t)〉〉. Substituting Eqs. (5.6),(5.3) in Eq. (5.2), we
have

∂αur+1(x, t)

∂tα
= (

1

sin(x)
+
x

3
)
(

ΨT (x)Cr+1Ψ(t)
)

+ ΨT (x)MΨ(t). (5.7)

Step 4. Applying the fractional integral operator Iαt to Eq. (5.7), and using
ur+1(x, 0) = sin(x), we have

ur+1(x, t) = (
1

sin(x)
+
x

3
)
(

ΨT (x)Cr+1(CPαt )
)

+ ΨT (x)M(CPαt ) + sin(x).

(5.8)

For simplicity, let

A(x) = (
1

sin(x)
+
x

3
),K(x, t) = sin(x)− xetsin(1).

Using Eqs. (5.8),(5.5), we get[
(CP βx )T − x(CP β(1))T

]
Cr+1Ψ(t)− (5.9)

A(x)
[
ΨT (x)Cr+1(CPαt )

]
= ΨT (x)M(CPαt ) +K(x, t).

In discrete form, from Eq. (5.9) and using collocation points, we have the matrix
form [

(CP βx )T−(CV β,1,x)T
]
Cr+1Ψ−A

[
ΨTCr+1(CPαt )

]
= ΨTM(CPαt )+K. (5.10)

Step 5. Let Q := (AΨT )−1, and some calculations we get

Q
[
(CP βx )T − (CV β,1,x)T

]
Cr+1 − (5.11)

Cr+1(CPαt )(Ψ)−1 = Q
[
ΨTM(CPαt ) +K

]
(Ψ)−1,

which is the Sylvester equation.
Step 6. Solving Eq. (5.11), we get the coefficients Cr+1. Replacing r = 0

and using u0(x, t) = sin(x) in Step 3, solving Eq. (5.11), we get C1 coefficients and
substituting these coefficients in Eqs. (5.5 or 5.8), we obtain the approximate solution
u1(x, t). By doing this process, replacing r = 1 and using u1(x, t) in Step 3, solving
Eq. (5.11), we obtain u2 and so on.

The approximate solutions from the HWCM and CWCM and the Picard technique
were plotted at α = 1, β = 2, J = 4, k = 2 and M = 8 and the solutions at different
iterations were compared with the exact solution (Figures (1,8)). This revealed that
the absolute error decreased as the number of iterations increased. Furthermore,
Figures (2, 3, 4, 5, 6 and 7) compare the exact and approximate solutions for Example
(5.1) at the 5th iteration for different values of J and M and showed that the absolute
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errors decreased as J for HWCM and M for CWCM increased. Tables (1,2) show
the different values of α, β. When α = 1, β = 2, the absolute errors showed that
the solution of the proposed method converged to the exact solution. Table (3)
compares the absolute error between the HWCM and CWCM and the MHPM[30].
As seen, the absolute errors of the CWCM and HWCM in comparison with the MHPM
demonstrate the high accuracy and efficiency of the proposed methods.

Example 5.2. Consider the following nonhomogeneous singular partial differential
equation of fractional order

∂αu

∂tα
− (

1

x
+ sin(x))

∂βu

∂xβ
− 1

x2
u2 = f(x, t). (5.12)

with initial and boundary condition:

u(x, 0) = 2x3, u(0, t) = 0, u(1, t) =
2

1 + 2t
, 0 ≤ x, t ≤ 1. (5.13)

Exact solution for α = 1, β = 2 is u(x, t) = 2x3

1+2t , and

f(x, t) =
−12(2t+ 1)xsin(x)− 4x4 − 4x3 − 24t− 12

(1 + 2t)2
.

The initial approximation of u0(x, t) = 2x3 was used when applying the proposed
methods to arrive at an approximate solution to this singular problem. The solu-
tions were plotted using the HWCM and CWCM and the Picard technique subject to
α = 1, β = 2, J = 5, k = 2,M = 8. The solutions obtained at different iterations were
compared with the exact solution, as shown in Figures (1,8). It was revealed that ab-
solute errors decreased as the number of iterations increased. Moreover, comparison
of the Haar and Chebyshev Picard methods and MHPM [30] solutions with the exact
solution by computation of the absolute errors of these methods clearly revealed that
the proposed techniques were much more efficient and accurate with equal colloca-
tion points than the MHPM [30] as shown in Tables (4,5). Table (5) compares the
approximate solutions obtained from the HWCM and CWCM with the exact solution
and the approximate solution obtained from the MHPM [30]. As seen, the solutions
obtained from the wavelets methods(HWCM and CWCM) are more accurate that of
the MHPM [30].
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Figure 9. The Haar wavelets collocation approximate solutions, ex-
act solution and absolute errors for α = 1, β = 2, J = 5 in Example
(5.2) at various iterations

6. Conclusion

The Haar and Chebyshev wavelet collocation methods have been employed to solve
singular nonlinear fractional differential equations, which are used to model various
types of problems in fluid dynamic and mathematical physics. The solution is sub-
stantiated using illustrative examples and the numerical solutions are presented in
the tables and figures. It was observed that the Haar Wavelets Collocation Method
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Figure 10. The second-kind Chebyshev wavelets collocation ap-
proximate solutions, exact solution and absolute errors for α = 1, β =
2, k = 2,M = 8 in Example (5.2) at various iterations
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(HWCM) and Chebyshev Wavelets Collocation Method (CWCM) provide more ac-
curate approximate solutions in comparison with the exact solution than does the
Modified Homotopy Perturbation Method (MHPM). It is clear that these methods
are more accurate when computing approximate solutions and the results show the
efficiency of the proposed method. This is the first time that these singular fractional
equations have been solved by the HWCM and CWCM and the Picard technique.
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The advantages of the present methods over other methods are as follows:

(1) Instead of an operational derivative, an operational integral matrix was used.
(2) The boundary and initial conditions were derived automatically. By using

the derivative matrix, we usually have to choose the base to satisfy the initial
conditions, but we do not have this restriction for the integral operator.

(3) Instead of approximating the integral operation with the use of black-pulse
functions, the fractional integral operation was directly obtained for better
approximation.

(4) By using the wavelet bases and transforming the nonlinear and singular prob-
lem into a Sylvester equation, good results were obtained with little calcula-
tion and few iterations.

(5) The main advantage of these methods is the conversion of singular nonlinear
PDEs to a system of algebraic equations. These equations can be easily solved
by a computer.
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