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Abstract In this work, we investigate a fractional version of the Fisher equation and solve
it by using an efficient iteration technique based on the Haar wavelet operational
matrices. In fact, we convert the nonlinear equation into a Sylvester equation by
the Haar wavelet collocation iteration method (HWCIM) to obtain the solution. We
provide four numerical examples to illustrate the simplicity and efficiency of the
technique.
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1. Introduction

Fractional calculation has different applications in physics and engineering such
electro-magnetics, acoustics, viscoelasticity, electrochemistry and material science (see
for example [1, 13, 18, 23]). In 1937 Fisher , Kolmogorov, Petrovsky and Piscounov [5,
10] investigated independently the Fisher-KPP equation, after then, it is extensively
known as the Fisher’s equation. Fisher’s equation belong to the class of reaction-
diffusion equation, it is one of the simplest nonlinear r.d.e. Fisher proposed this
equation in his article, "The wave of advance of advantageous genes" in 1937, which
is about of population dynamics to describe the spatial spread of an advantageous
allele and explored its trowelling wave solutions.

Distinct numerical methods have been applied for approximate solutions of Fisher’s
equation including the Adomian decomposition method (ADM) [9], the homotopy per-
turbation method (HPM) [24], the variational iteration method (VIM) [15], the Haar
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wavelet method [3, 4, 7, 8, 11, 17, 20] and the tanh method [21]. As you know the
time fractional Fisher’s equation, which is a mathematical model for a wide range
of important physical phenomena, is a partial differential equation obtained from the
classical Fisher’s equation by replacing the time derivative with a fractional derivative
of order 0 < α ≤ 1. In fact, the Fisher’s equation as a model for the propagation
of a mutant gene is encountered in chemical kinetics and population dynamics which
includes problems such as nonlinear evolution of a population in a one-dimensional
habitat, neutron population in a nuclear reaction. Moreover, the same equation occurs
in logistic population growth models, flame propagation, neurophysiology, autocat-
alytic chemical reactions and branching Brownian motion processes [14, 16]. Due to
the occurrence of Fisher’s equation in many biological and chemical processes, it is
one of the most important classes of nonlinear equations [6].

There are different kinds of wavelets. The simplest orthogonal wavelet with com-
pact support is the Haar wavelet. Since the derivatives do not exist in the points
of discontinuity, it is not possible to apply the Haar wavelets for solving differential
equations directly. We use Haar wavelet based on the collocation method. In this
paper, we use a combination of Haar wavelet and iteration technique for numerical
solutions of the modified Fisher’s equation with time-fractional derivative of the form

Dα
t u(x, t) = Dxxu(x, t) + λu(x, t)(1− un(x, t)) + q(x, t), (1.1)

(x, t) ∈ [0, 1]× [0, 1], u(x, 0) = f(x), u(0, t) = y1(t), u(1, t) = y2(t),

where 0 < α ≤ 1, λ is real parameter, Dα
t denotes the Caputo fractional derivative in

time and y1(t), y2(t), f(x) and q(x, t) are known functions. We discretize the nonlinear
fractional partial differential equation by iteration technique (Picard iteration) and
then convert the obtained discritized equation into a Sylvester equation by the Haar
wavelet collocation method to obtain the solution.

2. Operational matrices

2.1. Integer and fractional integration of operational matrix. The i-th uni-
form Haar wavelet hi(x) is defined by

hi(x) =

 1 a(i) ≤ x < b(i)
−1 b(i) ≤ x < c(i)
0 otherwise,

(2.1)

where a(i) = k−1
m , b(i) = k−0.5

m , c(i) = k
m , i = 2j + k + 1, j = 0, 1, 2, 3, . . . , J ,

x ∈ [0, 1), js are dilation parameters, m = 2j and k = 0, 1, 2, · · · , 2j−1 are translation
parameter. The Maximum level of resolution is J . In particular h1(x) = χ[0,1)(x) is
the Haar scaling function, where χ[0,1)(x) is characteristic function on interval [0, 1).
Let us define the collocation points xl = l−0.5

m where l = 1, 2, 3, . . . ,m. We establish
an operational matrix for integration via Haar wavelet. The operational matrix of
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integration of integer order is obtained by integrating Eq. (2.1) as following

Pα,1(x) = Iαa(1)h1(x) =
1

Γ(α)

∫ x

a(1)

(x− s)α−1ds, α > 0

Pα,i(x) = Iαa hi(x) = (2.2)

1

Γ(α)


∫ x
a(i)

(x− s)α−1ds a(i) ≤ x < b(i),∫ b(i)
a(i)

(x− s)α−1ds−
∫ x
b(i)

(x− s)α−1ds b(i) ≤ x < c(i),∫ b(i)
a(i)

(x− s)α−1ds−
∫ c(i)
b(i)

(x− s)α−1ds x ≥ c(i).

By simplifying, we get

Pα,1(x) =
(x− a(1))α

Γ(α+ 1)
(2.3)

and

Pα,i(x) = Iαa hi(x) (2.4)

=
1

Γ(α)


(x− a(i))α, a(i) ≤ x < b(i);
(x− a(i))α − 2(x− b(i))α, b(i) ≤ x < c(i);
(x− a(i))α − 2(x− b(i))α + (x− c(i))α, x ≥ c(i).

Each function y ∈ L2[0, 1] can be expressed in terms of the Haar wavelet by:

y(x) =

∞∑
i=1

cihi(x),

where cis are the Haar wavelet coefficients given by ci =
∫ 1

0
y(x)hi(x)dx. We can

approximate the function y(x) by the truncated series:

y(x) ≈
m−1∑
i=1

cihi(x). (2.5)

By taking the collocation points x(l) = l−0.5
m for l = 1, 2, . . . ,m, we define Haar

wavelet matrix Hm×m by

Hm×m =


h1(x(1)) h1(x(2)) · · · h1(x(m))
h2(x(1)) h2(x(2)) · · · h2(x(m))

...
...

. . .
...

hm(x(1)) hm(x(2)) · · · hm(x(m))

 .

We can represent Eq. ( 2.5) in vector form as y = cH, where c = [c1, c2, . . . , cm].
The Haar coefficients ci can be evaluated by c = yH−1 where H−1 is inverse of H.
Similarly, we can obtain the fractional order integration operational matrix P of Haar
function by substituting the collocation points in Eq. (2.3) and Eq. (2.4) as following:

Pαm×m =


Pα,1(x(1)) Pα,1(x(2)) · · · pα,1(x(m))
Pα,2(x(1)) pα,2(x(2)) · · · Pα,2(x(m))

...
...

. . .
...

pα,m(x(1)) pα,m(x(2)) · · · pα,m(x(m))

 .
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For example, if m = 8 and α = 0.9, the Haar wavelet operational matrix of fractional
integration is given by:

P
0.9
8×8 =



0.0857 0.2305 0.3650 0.4941 0.6195 0.7421 0.8625 0.9811
0.0857 0.2305 0.3650 0.4941 0.4480 0.2812 0.1325 −0.0071
0.0857 0.2305 0.1935 0.0331 −0.0248 −0.156 −0.115 −0.0091

0 0 0 0 0.0857 0.2305 0.1935 0.0331
0.0857 0.0590 −0.0102 −0.0054 −.0037 −0.0028 −0.0022 −0.0018

0 0 0.0857 0.0590 −0.0102 −0.0054 −0.0037 −0.0028
0 0 0 0 0.0857 0.0590 −0.0102 −0.0054
0 0 0 0 0 0 0.0857 0.0590


.

2.2. Haar wavelet operational matrix of fractional integration for boundary
value problems. We derive another operational matrix of fractional integration to
solve the fractional boundary value problems. Let η > 0, g : [0, η]→ R be a continuous
function and [0, η] be the Haar function support. Put

g(x)Iα0 h1(η) = g(x)

∫ η

0

(η − s)α−1ds,

vα,η,1 = g(x)Cα,1

and

g(x)Iα0 hi(η) = g(x)

{∫ b(i)

a(i)

(η − s)α−1ds−
∫ c(i)

b(i)

(η − s)α−1ds

}
,

vα,η,i = g(x)Cα,i,

where Cα,1 = ηα

Γ(α+1) and Cα,i = 1
Γ(α+1)

[
(η− a(i))α − 2(η− b(i))α + (η− c(i))α

]
. By

using the introduced collocation points, we obtain

V
α,η,g(x)
m×m =


g(x(1))Iα0 h1(η) g(x(2))Iα0 h1(η) · · · g(x(m))Iα0 h1(η)
g(x(1))Iα0 h2(η) g(x(2))Iα0 h2(η) · · · g(x(m))Iα0 h2(η)

...
...

. . .
...

g(x(1))Iα0 hm(η) g(x(2))Iα0 hm(η) · · · g(x(m))Iα0 hm(η)

 .

3. Method of solution

In this section, we describe the solving method of the time fractional modified
Fisher’s equation. The first step is to convert the fractional nonlinear partial differen-
tial equation to a linear partial differential equation by using the iteration technique.
The second step is to solve the obtained discretized fractional partial differential equa-
tion by Haar wavelet operational matrix method.

Consider the problem:

Dα
t u(x, t) = Dxxu(x, t) + λu(x, t)(1− un(x, t)) + q(x, t), (3.1)

0 < α ≤ 1, λ ∈ R, n ≥ 1,

with the initial and boundary conditions:

u(x, 0) = g(x), u(0, t) = y1(t), u(1, t) = y2(t) (t ≥ 0, 0 ≤ x ≤ 1).
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By applying the iteration method of Picard to Eq. (3.1) (see [2]), we get the following
problem:

∂αur+1

∂tα
− ∂2ur+1

∂x2
= λur(x, t) (1− ur(x, t)) + q(x, t), (0 < α ≤ 1, r ≥ 0) (3.2)

with the initial and boundary conditions:

ur+1(x, 0) = g(x), ur+1(0, t) = y1(t), ur+1(1, t) = y2(t), (t ≥ 0, 0 ≤ x ≤ 1).

For applying the Haar wavelet method to Eq. (3.2), we suppose that

∂2ur+1

∂x2
=

m∑
i=1

m∑
j=1

Cr+1
i,j hi(x)hi(t) = HT (x)Cr+1H(t). (3.3)

By applying the fractional integral operator I2
x on the Eq. (3.3), we obtain:

ur+1(x, t) = (P 2
x )TCr+1H(t) + p(t)x+ q(t). (3.4)

By using the boundary conditions and putting x = 0 and x = 1, we get q(t) = y1(t)
for x = 0 and p(t) = y2(t)− y1(t)− (P 2

x (1))TCr+1H(t) for x = 1. Thus, the Eq. (3.4)
can be rewritten as:

ur+1(x, t) = (P 2
x )TCr+1H(t)− x

{
(P 2
x (1))TCr+1H(t)

}
(3.5)

+x(y2(t)− y1(t)) + y1(t).

Now for simplicity, we denote the right side of Eq. (3.2) by S(x, t), that is,

S(x, t) = λur(x, t)(1− ur(x, t)) + q(x, t) (3.6)

=

m∑
i=1

m∑
j=1

mi,jhi(x)hj(t) = HT (x).M.H(t),

where mi,j =
〈
hi(x),

〈
S(x, t), hj(t)

〉〉
. By substituting Eq. (3.6) and Eq. (3.3) in

Eq. (3.2), we get:

∂αur+1

∂tα
= HT (x)Cr+1H(t) +HT (x)MH(t). (3.7)

By applying fractional integral operator Iαt to Eq. (3.7) and using the initial condition,
we obtain:

ur+1(x, t) = HT (x)Cr+1Pαt +HT (x)MPαt + g(x). (3.8)

Now, from Eqs. (3.8) and (3.5) we get:

K(x, t) + (P 2
x )TCr+1H(t)− x

(
(P 2
x (1))TCr+1H(t)

)
(3.9)

−HT (x)Cr+1Pαt −HT (x)MPαt = 0,

where K(x, t) = −g(x) + x
(
y2(t) − y1(t)

)
+ y1(t). By discrediting Eq. (3.9) and

using collocation points, we obtain the matrix form:(
(P 2
x )T − V 2,1,g(x)

)
Cr+1H −HTCr+1Pαt −HTMPαt +K = 0, (3.10)
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where H is the m×m Haar matrix, V 2,1,g(x) = g(x)I2
1H

T = x(P 2(1))T is the m×m
fractional integration matrix for boundary value problem, Pαx = IαxH

T and Pαt =
Iαt H are the m × m matrices of fractional integration of the Haar function. Also,
K = K(x(i), t(i)) (i = 1, 2, . . . ,m) is the matrix determined by using the collocation
points. Note that, the Eq. (3.10) can be written by:

(H
T

)
−1
(

(P
2
)
T − V 2,1,g(x)

)
︸ ︷︷ ︸

A

C
r+1 − Cr+1

P
α
t (H

−1
)︸ ︷︷ ︸

−B

= (H
T

)
−1
(
H
T
MP

α
t −K

)
(H
−1

)︸ ︷︷ ︸
D

, (3.11)

where it is the Sylvester equation(A C+C B=D). We solve the Eq. (3.11) for
Cr+1 which is m × m coefficients matrix. By substituting Cr+1 in Eq. (3.8) or
Eq. (3.5), we get solution ur+1(x, t) at the collocation points. By considering an initial
approximation u0(x, t), we obtain a linear fractional partial differential equation in
u1(x, t) by substituting r = 0 in Eq. (3.2). Again, we solve it by the above procedure.
Similarly, for r = 1, we obtain u2(x, t) and so on.

4. convergence

Theorem 4.1. Consider the functions um(x, t) obtained by the Haar wavelet with
approximation u(x, t). Then, ‖u(x, t)− um(x, t)‖E ≤ K√

3m
, where

‖u(x, t)‖E =

(∫ 1

0

∫ 1

0

u2(x, t)dxdt

)1/2

.

Proof. Since um(x, t) =
∑m−1
n=0

∑m−1
l=0 unlhn(x)hl(t), we have

u(x, t)− um(x, y) =

∞∑
n=m

∞∑
l=m

unlhn(x)hl(t) =

∞∑
n=2p+1

∞∑
l=2p+1

unlhn(x)hl(t).

The orthogonality of the functions hi(x) on [0, 1) implies that hl(.) = 2
j
2h(2j(.)−k).

Hence,

‖u(x, t)− um(x, t)‖2E =

∫ 1

0

∫ 1

0

(u(x, t)− um(x, t))2dxdt (4.1)

= 2j
∞∑

n=2p+1

∞∑
l=2p+1

∞∑
n′=2p+1

∞∑
l′=2p+1

unlun′l′(∫ 1

0

hn(x)hn′(x)dx

)(∫ 1

0

hl(t)hl′(t)dt

)

= 2j
∞∑

n=2p+1

∞∑
l=2p+1

u2
nl
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where unl =

〈
hn(x),

〈
u(x, t), hl(t)

〉〉
. By using Eq. (2.1), we get:

〈
u(x, t), hl(t)

〉
=

∫ 1

0

u(x, t)hl(t)dt = 2
j
2

(∫ k−0.5

2j

k−1

2j

u(x, t)dt−
∫ k

2j

k−0.5

2j

u(x, t)dt

)
.

By using mean value theorem of integrals, there exist k−1
2j ≤ t1 <

k−0.5
2j and k−0.5

2j ≤
t2 <

k
2j such that〈
u(x, t), hl(t)

〉
= 2

j
2

((k − 0.5

2j
− k − 1

2j
)
u(x, t1)−

( k
2j
− k − 0.5

2j
)
u(x, t2)

)
=

2
j
2

2j+1

(
u(x, t1)− u(x, t2)

)
and

unl =

〈
hn(x),

1

2
j
2 +1

(u(x, t1)− u(x, t2))

〉
(4.2)

=
1

2j+1

∫ 1

0

hn(x)(u(x, t1)− u(x, t2))dx

=
2
j
2

2
j
2 +1

(∫ k−0.5

2j

k−1

2j

u(x, t1)dx−
∫ k

2j

k−0.5

2j

u(x, t1)dx

−
∫ k−0.5

2j

k−1

2j

u(x, t2)dx+

∫ k

2j

k−0.5

2j

u(x, t2)dx

)
.

By using mean value theorem of integrals, choose k−1
2j ≤ x1, x2 <

k−0.5
2j and k−0.5

2j ≤
x3, x4 <

k
2j such that

unl =
1

2

{
(
k − 0.5

2j
− k − 1

2j
)u(x1, t1)− (

k−
j
− k − 0.5

2j
)u(x2, t1)−

(
k − 0.5

2j
− k − 1

2j
)u(x3, t2) + (

k

2j
− k − 0.5

2j
)u(x4, t2)

}
=

1

2j+2

{
(u(x1, t1)− u(x2, t1))− (u(x3, t2)− u(x4, t2))

}

and so u2
nl = 1

22j+4

{
(u(x1, t1)− u(x2, t1))− (u(x3, t2)− u(x4, t2))

}2

. By using mean

value theorem of derivatives, there exist x1 ≤ ξ1 < x2 and x3 ≤ ξ2 < x4 such that

u2
nl ≤ 1

22j+4

{
(x2 − x1)2[

∂u(ξ1, t1)

∂x
]2 + (x4 − x3)2[

∂u(ξ1, t1)

∂x
]2 +

2(x2 − x1)(x4 − x3)

∣∣∣∣∂u(ξ1, t1)

∂x

∣∣∣∣∣∣∣∣∂u(ξ2, t2)

∂x

∣∣∣∣}.
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Since ∂u(x,t)
∂x is bounded on (0, 1)× (0, 1), there exists K > 0 such that

∣∣∣∣∂u(x,t)
∂x

∣∣∣∣ ≤ K
for all x, t ∈ (0, 1)× (0, 1). This implies that u2

nl ≤
(

1
22j+4

)
4K2

22j = 4K2

24j+4 and so

||u(x, t)− um(x, t)||2E =

∞∑
j=p+1

( 2j+1−1∑
n=2j

2j+1−1∑
n=2j

u2
nl

)
≤

∞∑
j=p+1

( 2j+1−1∑
n=2j

2j+1−1∑
n=2j

4K2

24j+4

)

= 4K2
∞∑

j=p+1

( 2j+1−1∑
n=2j

2j+1−1∑
n=2j

1

24j+4

)

=
K2

3

1

4p+1
=

K2

3m2
.

Thus, ‖u(x, t)−um(x, t)‖E ≤ K√
3m

and so ‖u(x, t)−um(x, t)‖E → 0 when m→∞.
By using a similar procedure, we can show that ‖ur+1(x, t) − umr+1(x, t)‖E ≤ K√

3m

which implies that error between the exact and approximate solution at the (r+1)th
iteration is inversely proportional to the maximal level of resolution. This shows
that umr+1(x, t) converges to ur+1(x, t) as m → ∞. Since ur+1(x, t)is obtained at
(r+1)th iteration of Picard technique, we conclude that ur+1(x, t) converges to u(x, t)
as r →∞. Thus, limm,r→∞ umr+1(x, t) = u(x, t). �

5. Experiments and results

In this section, we use the Haar wavelet collocation iteration method (HWCIM)
to solve the fractional Fisher’s equations. We provide four examples to illustrate the
method.

Example 1. Consider the problem (1.1) for λ = 1, n = 6 , q(x, t) = 0.

∂αu

∂tα
=
∂2u

∂x2
+ u(x, t)

(
1− u6(x, t)

)
(5.1)

with the initial and boundary conditions:

u(x, 0) = g(x) =
( 1

1 + e
3x
2

) 1
3

, u(0, t) = y1(t) =
( 1

1 + e
−15t

4

) 1
3

,

u(1, t) = y2(t) =
( 1

1 + e
6−15t

4

) 1
3

.

It is known that the problem has the exact solution uexact =
(

1

1+e
−15t+6x

4

) 1
3

for α = 1.

We put u0(x, t) =
(

1

1+e
3x
2

) 1
3

and apply the Haar wavelet iteration technique. By
applying the iteration technique of Picard, we obtain:

∂αur+1

∂tα
− ∂2ur+1

∂x2
= ur

(
1− (ur)

6
)

(5.2)
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with the initial and boundary conditions: ur+1(x, 0) = g(x), ur+1(0, t) = y1(t) and
ur+1(1, t) = y2(t). We suppose that

∂2ur+1

∂x2
= HT (x)Cr+1H(t) (5.3)

Now, by applying the fractional integral operator I2
x on the Eq. (5.3), we get:

ur+1(x, t) = (P 2
x )TCr+1H(t) + p(x)t+ q(t). (5.4)

By using the boundary conditions and putting x = 0 and x = 1, we get q(t) = y1(t)
for x = 0 and p(t) = y2(t) − y1(t) − (P 2

x )TCr+1H(t) for x = 1. Thus, the Eq. (5.4)
can be rewritten as:

∂2ur+1

∂x2
= HT (x)Cr+1H(t)− x(P 2

x )TCr+1H(t) + x(y2(t)− y1(t)) + y1(t).

(5.5)

We put the right of Eq. (5.2) by S(x, t), and we estimate by Haar wavelet, that is,

ur(x, t)
(
1− (ur(x, t))

6
)

= S(x, t) (5.6)

=

m∑
i=1

m∑
j=1

mi,jhi(x)hj(t) = HTMH(t),

where mi,j =
〈
hi(x),

〈
S(x, t), hj(t)

〉〉
. We substitute Eqs. (5.6) and (5.3) in Eq. (5.2),

∂αur+1

∂tα
= HT (x)Cr+1H(t) +HT (x)MH(t). (5.7)

We apply fractional integral operator Iαt to Eq. (5.7) and use the initial condition,

ur+1(x, t) = HT (x)Cr+1P
α
t +HT (x)MPαt + g(x). (5.8)

Now, from Eqs. (5.8) and (5.4) we get:

K(x, t) + (P 2
x )TCr+1H(t)− x

(
(P 2
x (1))TCr+1H(t)

)
(5.9)

−HT (x)Cr+1Pαt −HT (x)MPαt = 0,

where K(x, t) = −g(x) + x
(
y2(t)− y1(t)

)
+ y1(t). By discrediting Eq. (5.9) and using

collocation points, we obtain the matrix form as follow:(
(P 2
x )T − V 2,1,g(x)

)
Cr+1H −HTCr+1Pαt −HTMPαt +K = 0, (5.10)

where H is the m×m Haar matrix, V 2,1,g(x) = g(x)I2
1H

T = x(P 2(1))T is the m×m
fractional integration matrix for boundary value problem, Pαx = IαxH

T and Pαt =
Iαt H are the m × m matrices of fractional integration of the Haar function. Also,
K = K(x(i), t(i)) (i = 1, 2, . . . ,m) is the matrix determined by using the collocation
points. Note that, the Eq. (5.10) can be rewritten by:

(H
T

)
−1
(

(P
2
)
T − V 2,1,g(x)

)
︸ ︷︷ ︸

A

C
r+1 − Cr+1

P
α
t (H

−1
)︸ ︷︷ ︸

−B

= (H
T

)
−1
(
H
T
MP

α
t −K

)
(H
−1

)︸ ︷︷ ︸
D

, (5.11)

where is the Sylvester equation. By considering r = 0 and initial approximation
u0(x, t) and solving the Sylvester equation by Matlab software, we obtain C1. Then,
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Table 1. Absolute error for Example 1, with m = 64 and α→ 1

method HWCIM HWCIM HWCIM HWCIM MVIM[16] HPM [12]

(x, t) α = 0.5 α = 0.7 α = 0.9 α = 1 α = 1 α = 1

|u4 − uex| |u4 − uex| |u4 − uex| |u4 − uex| |u4 − uex| |u4 − uex|

( 15
128 ,

15
128 ) 1.34× 10−2 9.51× 10−3 3.79× 10−3 4.06× 10−6 2.47× 10−2 4.09× 10−2

( 31
128 ,

31
128 ) 1.40× 10−2 9.48× 10−3 3.84× 10−3 5.59× 10−6 4.92× 10−2 1.10× 10−1

( 47
128 ,

47
128 ) 7.74× 10−3 4.52× 10−3 1.57× 10−3 4.02× 10−5 6.30× 10−2 2.29× 10−1

( 63
128 ,

63
128 ) 3.08× 10−4 5.35× 10−4 6.23× 10−4 2.60× 10−4 5.93× 10−2 4.26× 10−1

( 79
128 ,

79
128 ) 5.12× 10−3 4.34× 10−3 1.66× 10−3 7.36× 10−4 3.69× 10−2 7.27× 10−1

( 95
128 ,

95
128 ) 7.31× 10−3 5.34× 10−3 1.61× 10−3 1.17× 10−3 6.75× 10−3 1.15× 100

( 111
128 ,

111
128 ) 5.87× 10−3 3.98× 10−3 9.98× 10−4 1.01× 10−4 4.08× 10−2 1.73× 100

( 127
128 ,

127
128 ) 4.95× 10−4 3.19× 10−4 6.87× 10−5 8.90× 10−5 7.83× 10−2 2.46× 100

by substituting C1 to Eq. (5.8) or Eq. (5.4) we get u1(x, t) at the collocation points.
Similarly for r = 1, we obtain u2(x, t) and so on.

The numerical results for m = 64 are given in Figure 1 and Table 1. Note that,
Table 1 shows that the solutions obtained by the present method for different value
of α, convergence to the exact solution whenever α tends to 1. Also, the obtained
numerical results have been compared with HPM [12], [22] and MVIM [16].

Example 2. Consider the problem (1.1) for λ = 1, n = 1 and q(x, t) = 0 ,

∂αu

∂tα
=
∂2u

∂x2
+ u(x, t)(1− u(x, t))

with the initial and boundary conditions

u(x, 0) = β, u(0, t) =
βet

1− β + βet
, u(1, t) =

βet

1− β + βet
,

Where β be a constant. It is known that the problem has the exact solution uexact =
βet

1−β+βet for α = 1.

Put u0(x, t) = β and apply the Haar wavelet iteration technique. The numerical
results for m = 64 and β = 2/3 at 4 iterations are given in Figure 2, Figure 3 and
Table 2. Note that, Table 2 shows that the solutions obtained by the present method
for different values of α, convergence to the exact solution whenever α tends to 1.
Also, the obtained numerical results have been compared with HPM [24] and MVIM
[16] and Figure 3 shows that the approximate results are closer to the exact solution
by increasing the resolution (m).

Example 3. Consider the problem (1.1) for λ = 6, n = 1 and q(x, t) = 0

∂αu

∂tα
=
∂2u

∂x2
+ 6u(x, t)(1− u(x, t))

with the initial and boundary conditions:

u(x, 0) =
1

(1 + ex)2
, u(0, t) =

1

(1 + e−5t)2
, u(1, t) =

1

(1 + e1−5t)2
.
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Figure 1. Comparison of the exact solution and the Haar wavelet collo-
cation iteration solution for Example 1

(a) exact solution for α = 1 (b) approximate solution at the 4th iteration with m =

64, α = 1

(c) absolute error for the 1st iteration with m = 64,

α = 1

(d) absolute error for the 2nd iteration with m = 64,

α = 1

(e) absolute error for the 3rd iteration with m = 64,

α = 1

(f) absolute error for the 4th iteration with m = 64,

α = 1
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Figure 2. Comparison of the exact solution and the Haar wavelet collo-
cation iteration solution for Example 2

(a) exact solution for α = 1 (b) approximate solution at the 4th iteration with m =

64, α = 1

(c) absolute error for the 1st iteration with m = 64,

α = 1

(d) absolute error for the 2nd iteration with m = 64,

α = 1

(e) absolute error for the 3rd iteration with m = 64,

α = 1

(f) absolute error for the 4th iteration with m = 64,

α = 1
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Table 2. Absolute error for Example 2, m = 64 and α→ 1.

method HWCIM HWCIM HWCIM HWCIM HPM [24] MVIM [16]

(x, t) α = 0.5 α = 0.7 α = 0.9 α = 1 α = 1 α = 1

|u4 − uex| |u4 − uex| |u4 − uex| |u4 − uex| |u4 − uex| |u4 − uex|

( 31
128 ,

31
128 ) 7.34× 10−3 4.91× 10−3 1.92× 10−3 2.59× 10−7 2.88× 10−7 2.17× 10−3

( 31
128 ,

63
128 ) 2.67× 10−3 1, 39× 10−3 3.73× 10−4 1.74× 10−7 6.26× 10−6 8.98× 10−3

( 31
128 ,

95
128 ) 8.88× 10−4 1.02× 10−3 5.60× 10−4 5.01× 10−7 2.19× 10−5 2.04× 10−2

( 31
128 ,

127
128 ) 3.61× 10−4 2.73× 10−3 1.14× 10−3 1.24× 10−6 9.10× 10−6 3.68× 10−2

( 63
128 ,

31
128 ) 9.95× 10−3 6.69× 10−3 2.65× 10−3 3.78× 10−7 2.88× 10−7 2.17× 10−3

( 63
128 ,

63
128 ) 3.66× 10−3 1.94× 10−3 5.38× 10−4 2.49× 10−7 6.26× 10−6 8.98× 10−3

( 63
128 ,

95
128 ) 1.15× 10−3 1.34× 10−3 7.38× 10−4 7.24× 10−7 2.19× 10−5 2.04× 10−2

( 63
128 ,

127
128 ) 4.84× 10−3 3.66× 10−3 1.53× 10−3 1.80× 10−6 9.10× 10−6 3.68× 10−2

( 95
128 ,

31
128 ) 7.65× 10−3 5.12× 10−3 2.01× 10−3 2.72× 10−7 2.88× 10−7 2.17× 10−3

( 95
128 ,

63
128 ) 2.78× 10−3 1.45× 10−3 3.91× 10−4 1.82× 10−7 6.26× 10−6 8.98× 10−3

( 95
128 ,

95
128 ) 9.21× 10−4 1.06× 10−3 5.82× 10−4 5.26× 10−7 2.19× 10−5 2.04× 10−2

( 95
128 ,

127
128 ) 3.75× 10−3 2.84× 10−3 1.19× 10−3 1.30× 10−6 9.10× 10−6 3.68× 10−2

( 127
128 ,

31
128 ) 3.13× 10−4 2.06× 10−4 7.85× 10−5 3.20× 10−9 2.88× 10−7 2.17× 10−3

( 127
128 ,

63
128 ) 1.10× 10−4 5.50× 10−5 1.32× 10−5 1.10× 10−9 6.26× 10−6 8.98× 10−3

( 127
128 ,

95
128 ) 4.24× 10−5 4.80× 10−5 2.57× 10−5 1.26× 10−8 2.19× 10−5 2.04× 10−2

( 127
128 ,

127
128 ) 1.59× 10−4 1.20× 10−4 5.00× 10−5 4.01× 10−8 9.10× 10−7 3.68× 10−2

It is known that the problem has the exact solution uexact = 1
(1+ex−5t)2 for α = 1.

We put u0(x, t) = 1
(1+ex)2 and apply the Haar wavelet iteration technique. The

numerical results included absolute error and approximate solutions for m = 64 at 4
iteration are given in Figure 4 which shows that, numerical solution is in very good
coincide with exact solution by increasing iterations. The present method solution
(HWCIM) has been compared with HPM [24] and MVIM [16] at Table (3), which
shows Haar wavelet collocation iteration method is more accurate than the HPM and
MVIM methods.

Example 4. Consider the problem (1.1) (non-homogenous time fractional fisher
equation) for λ = 1, n = 3 and

q(x, t) = t

(
−2− x(t+ x)(1− t3x3(t+ x)3) +

x2t−α

Γ(2− α)
+

2xt1−α

Γ(3− α)

)
,

with the initial and boundary conditions u(x, 0) = 0, u(0, t) = 0 and u(1, t) = t2 + t,
where it is known that the problem has the exact solution uexact(x, t) = xt2 + tx2.

Put u0(x, t) and apply the Haar wavelet collocation iteration technique. The nu-
merical results included absolute error and approximate solutions for m = 64 at 4
iterations are shown in Figure 5 and Table 4.
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Table 3. Absolute error for Example 3, m = 64 and α→ 1

method HWCIM HWCIM HWCIM HWCIM HPM [24] MVIM [16]

(x, t) α = 0.5 α = 0.7 α = 0.9 α = 1 α = 1 α = 1

|u4 − uex| |u4 − uex| |u4 − uex| |u4 − uex| |u4 − uex| |u4 − uex|

( 31
128 ,

31
128 ) 0.60× 10−2 4.25× 10−2 1.72× 10−2 4.11× 10−5 2.07× 10−2 5.12× 10−3

( 31
128 ,

63
128 ) 3.61× 10−3 2.83× 10−4 6.06× 10−4 2.77× 10−5 2.11× 10−1 7.99× 10−2

( 31
128 ,

95
128 ) 2.44× 10−2 1.82× 10−2 7.36× 10−3 4.98× 10−4 5.63× 10−1 1.12× 10−1

( 31
128 ,

127
128 ) 3.15× 10−2 2.16× 10−2 7.87× 10−3 7.76× 10−4 8.85× 10−1 1.91× 10−1

( 63
128 ,

31
128 ) 8.68× 10−2 6.10× 10−2 2.49× 10−2 7.75× 10−5 2.30× 10−1 1.54× 10−3

( 63
128 ,

63
128 ) 9.38× 10−3 3.71× 10−3 5.64× 10−4 2.85× 10−5 2.96× 10−1 8.95× 10−2

( 63
128 ,

95
128 ) 3.17× 10−2 2.38× 10−2 9.72× 10−3 7.06× 10−4 9.97× 10−1 2.90× 10−1

( 63
128 ,

127
128 ) 4.28× 10−2 2.95× 10−2 1.08× 10−2 1.12× 10−3 2.07× 10−1 1.91× 10−1

( 95
128 ,

31
128 ) 6.89× 10−2 4.85× 10−2 1.95× 10−2 6.62× 10−5 2.01× 10−1 1.10× 10−2

( 95
128 ,

63
128 ) 1.08× 10−2 5.15× 10−3 1.20× 10−3 1.20× 10−5 3.16× 10−1 5.40× 10−2

( 95
128 ,

95
128 ) 2.43× 10−2 1.86× 10−2 7.67× 10−3 5.00× 10−4 1.21× 10−1 3.18× 10−1

( 95
128 ,

127
128 ) 3.43× 10−2 2.37× 10−2 8.75× 10−3 8.10× 10−4 2.70× 10−1 6.52× 10−1

( 127
128 ,

31
128 ) 2.85× 10−3 1.89× 10−3 2.80× 10−4 1.63× 10−6 1.39× 10−2 2.00× 10−2

( 127
128 ,

63
128 ) 2.58× 10−3 1.62× 10−3 5.59× 10−4 1.37× 10−7 2.76× 10−1 8.65× 10−3

( 127
128 ,

95
128 ) 5.04× 10−4 5.15× 10−4 1.47× 10−3 1.66× 10−5 1.20× 10−1 2.29× 10−1

( 127
128 ,

127
128 ) 1.88× 10−3 1.37× 10−3 4.72× 10−4 2.72× 10−5 2.98× 10−1 6.44× 10−1

Table 4. Absolute error for Example 4, m = 64 and α→ 1.

method HWCIM HWCIM HWCIM HWCIM

(x, t) α = 0.5 α = 0.7 α = 0.9 α = 1

( 31
128 ,

31
128 ) 2.04× 10−2 1.37× 10−2 5.26× 10−2 2.80× 10−6

( 31
128 ,

63
128 ) 2.26× 10−2 1.45× 10−2 5.30× 10−3 4.59× 10−6

( 31
128 ,

95
128 ) 2.08× 10−2 1.28× 10−2 4.44× 10−3 7.45× 10−6

( 31
128 ,

127
128 ) 1.34× 10−2 8.17× 10−3 2.65× 10−3 8.84× 10−5

( 63
128 ,

31
128 ) 3.55× 10−2 2.37× 10−2 9.06× 10−3 4.03× 10−6

( 63
128 ,

63
128 ) 3.80× 10−2 2.43× 10−2 8.74× 10−3 6.37× 10−6

( 63
128 ,

95
128 ) 3.37× 10−2 2.06× 10−2 7.04× 10−3 8.31× 10−6

( 63
128 ,

127
128 ) 1.87× 10−2 1.12× 10−2 3.42× 10−3 3.89× 10−4

( 95
128 ,

31
128 ) 3.50× 10−2 2.33× 10−2 8.77× 10−3 2.89× 10−6

( 95
128 ,

63
128 ) 3.57× 10−2 2.25× 10−2 7.96× 10−3 4.12× 10−6

( 95
128 ,

95
128 ) 3.00× 10−2 1.81× 10−2 6.01× 10−3 3.33× 10−6

( 95
128 ,

127
128 ) 1.16× 10−2 6.40× 10−3 1.22× 10−3 1.19× 10−3

( 127
128 ,

31
128 ) 5.45× 10−3 3.56× 10−3 1.28× 10−3 3.93× 10−8

( 127
128 ,

63
128 ) 5.00× 10−3 3.03× 10−3 1.00× 10−3 1.18× 10−7

( 127
128 ,

95
128 ) 3.92× 10−3 2.21× 10−3 6.67× 10−4 2.38× 10−7

( 127
128 ,

127
128 ) 1.07× 10−3 1.99× 10−4 3.92× 10−4 5.52× 10−4
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Figure 3. Absolute error of Haar wavelet collocation iteration solution
with different values of M for Example 2

(a) absolute error for the 4th iteration withm = 8, α = 1 (b) absolute error for the 4th iteration with m = 16,

α = 1

(c) absolute error for the 4th iteration with m = 32,

α = 1

(d) absolute error for the 4th iteration with m = 64,

α = 1

6. Conclusion

In this work, we successfully apply the combination of Haar wavelet operational
matrices method and the iteration Picard technique to obtain the solution of frac-
tional fisher’s equation. By the use of iteration technique, we transform the nonlinear
fractional partial differential equation to the linear equation and Sylvester equation.
The obtained results have been compared with exact solutions, the HPM method, and
the MVIM method, which shows that numerical solutions are in very good coincide
with the exact solution by increasing iterations or level of resolution or both. These
results have been cited in the tables in order to justify the accuracy and efficiency of
the proposed method.
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Figure 4. Comparison of the exact solution and the Haar wavelet collo-
cation iteration solution for Example 3

(a) exact solution for α = 1 (b) approximate solution at the 4th iteration with m =

64, α = 1

(c) absolute error for the 1st iteration with m = 64,

α = 1

(d) absolute error for the 2nd iteration with m = 64,

α = 1

(e) absolute error for the 3rd iteration with m = 64, α = 1 (f) absolute error for the 4th iteration with m = 64, α = 1
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Figure 5. Comparison of the exact solution and the Haar wavelet collo-
cation iteration solution for Example 4

(a) exact solution for m = 64, α = 1 (b) approximate solution at the4th iteration with m =

64, α = 1

(c) absolute error for the 1st iteration with m = 64,

α = 1

(d) absolute error for the 2nd iteration with m = 64,

α = 1

(e) absolute error for the 3rd iteration with m = 64,

α = 1

(f) absolute error for the 4th iteration with m = 64,

α = 1
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