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Abstract A numerical method for the variable-order fractional functional differential equations (VO-

FFDEs) has been developed. This method is based on approximation with shifted Legendre

polynomials. The properties of the latter were stated, first. These properties, together
with the shifted Gauss-Legendre nodes were then utilized to reduce the VO-FFDEs into

a solution of matrix equation. Sequentially, the error estimation of the proposed method

was investigated. The validity and efficiency of our method were examined and verified via
numerical examples.
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1. Introduction

A brief history of the development of fractional differential operators can be found in
[23, 28]. Podlubny [30] deals lengthily with the theory of fractional order (non-integer)
derivatives and integrals. Nowaday, research on fractional calculus is a hot topic (see for
example [5, 17]).

Fractional calculus is currently being employed in several fields, including economics, en-
gineering, and science [5]. However, problems involving fractional differential equations
(FDEs) are already extensive and still growing, including interdisciplinary applications.
FDEs provide much accurate models for systems under consideration. Applications of
FDEs in the anomalous transport [22], bioengineering [20], colored noise [21], dynamics
of interfaces between nanoparticles and substrates [4], economics [1], fluid-dynamic traffic
model [14], frequency-dependent damping behavior of viscoelastic materials [39], and non-
linear oscillation of earthquakes [13], solid mechanics [31] are fast-growing. The analytic
results on the existence and uniqueness of FDEs solutions have been investigated [17,30].

Received: 24 May 2018 ; Accepted: 07 April 2019.
∗ Corresponding author.

99



100 R. M. HAFEZ AND Y.H. YOUSSRI

Adomian’s decomposition [26], Bernstein polynomials [3], collocation [11], finite differ-
ence method [7], Galerkin [40], He’s variational iteration [15,24,27], homotopy analysis [12],
homotopy perturbation [25], Laplace transform [10], reproducing kernel method [18], re-
producing kernel splines method [38], robust meshless method based on the moving least
squares approximation and finite difference scheme [37], shifted Chebyshev operational ma-
trix [2,9,33] and orthogonal spectral [32,34] are well-studied examples of numerical methods
to handle FDEs.

This study aimed to introduce a numerical method to enhance the accuracy of the nu-
merical solution of the VO-FFDEs Dirichlet boundary value problem [38]. Consider

Dµ(z)v(z) + α(z)v
′
(z) + β(z)v(z) + γ(z)v(τ(z)) = g(z), z ∈ [0, `], (1.1)

subject to

v(0) = κ0, v(`) = κ1,

where α(z), β(z), γ(z) ∈ C2[0, `], µ(z), τ(z), g(z) ∈ C[0, `], 1 ≤ µ(z) < 2, 0 ≤ τ ≤ `, κ0

and κ1 are constant, Dµ(z) denotes the variable fractional order derivative in Caputo’s sense
defned as follows

Dµ(z)v(z) =
1

Γ(2− µ(z))

∫ z

0

(z − t)1−µ(z)v
′′
(t)dt, (1.2)

where Γ(.) is Gamma function.
The proposed algorithm converts the VO-FFDEs (1.1) to a system of algebraic equations

by combining the basis functions of shifted Legendre polynomials and the Gauss-shifted
Legendre nodes as the collocation points.

The organization of the paper encompass; In Section 2, an overview of shifted Legendre
polynomials and their relevant properties required henceforward are presented, and in Sec-
tion 3, the way of constructing the collocation technique for VO-FFDEs is described by using
the shifted Legendre polynomials. In Section 4, we give a detailed study of the convergence
and error analyses In Section 5, the proposed method was applied to solve two examples.
Finally, a conclusion is given in Section 6.

2. Mathematical preliminaries

The well-known Legendre polynomials Li(y) are defined on the interval [−1, 1]. Firstly,
some properties about the standard Legendre polynomials have been recalled in this section.
The Legendre polynomials satisfy

L0(y) = 1, L1(y) = y, Lk+2(y) =
2k + 3

k + 2
yLk+1(y)− k + 1

k + 2
Lk(y).

Let the shifted Legendre polynomials Li(
2z
` − 1) be denoted by Pi(z). Then Pi(z) can be

obtained as follows

(i+ 1)Pi+1(z) = (2i+ 1)(2z − 1)Pi(z)− iPi−1(z), i = 1, 2, · · · .
Legendre polynomials have the following analytic form

Pi(z) =

i∑
k=0

(−1)
i+k (i+ k)!

(i− k)! (k!)2 `k
zk. (2.1)
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and

Pi(0) = (−1)
i
, Pi(`) = 1. (2.2)

We used zj , and$j , 0 ≤ j ≤ N, as the nodes and Christoffel numbers of the standard
Legendre-Gauss interpolation in the interval [−1, 1].

The corresponding nodes and corresponding Christoffel numbers of the shifted Legendre-
Gauss interpolation in the interval [0, `] can be given by

z`,j =
`

2
(zj + 1), $`,j = (

`

2
)$j , 0 ≤ j ≤ N.

3. Shifted Legendre collocation method (SLCM)

Let

a0 = −κ0, a1 =
κ0 − κ1

`
.

then by using the transformation

V (z) = v(z) + a0 + a1z, (3.1)

The boundary conditions (1.1) will be

V (0) = V (`) = 0. (3.2)

Hence it suffices to solve the modified variable-order fractional functional boundary value
problem

Dµ(z)V (z) + α(z)V
′
(z) + β(z)V (z) + γ(z)V (τ(z)) = f(z), z ∈ [0, `], (3.3)

subject to the homogeneous boundary conditions (3.2), where V (z) is given by (3.1), and

f(z) = g(z) + α(z)a1 + β(z)(a0 + a1z) + γ(z)(a0 + a1τ(z)).

Thus the approximate solution will be extended by using combination of basis functions of
shifted Legendre polynomials, in the form

VN (z) ≈
N∑
i=0

ciφi(z) = CTϕ(z), (3.4)

where the shifted Legendre coefficient vector C is given by

CT = [c0, c1, . . . , cN ] (3.5)

N is any arbitrary positive integer, and

φi(z) = Pi(z) + ζiPi+1(z) + ηiPi+2(z). (3.6)

From the boundary conditions; V (0) = V (`) = 0 and the two relations (2.2), we have the
accompanying framework

1− ζi + ηi = 0, (3.7)

1 + ζi + ηi = 0. (3.8)
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Thus ζi and ηi can be remarkably resolved to give [35],

ζi = 0, ηi = −1. (3.9)

Also ϕ(z) is given by

ϕ(z) = [φ0, φ1, . . . , φN ]T . (3.10)

Using (3.4) we can consider that

VN (τ(z)) ≈
N∑
i=0

ciφi(τ(z)). (3.11)

Substituting Eqs. (1.2), (3.4) and (3.11) into Eq. (3.3) we will have:

1

Γ(2− µ(z))

∫ z

0

(z − t)1−µ(z)
N∑
i=0

ciφ
′′

i (t)dt+ α(z)

N∑
i=0

ciφ
′

i(z) + β(z)

N∑
i=0

ciφi(z)

+ γ(z)

N∑
i=0

ciφi(τ(z)) ≈ f(z).

(3.12)

Let

hi(z) =
1

Γ(2− µ(z))

∫ z

0

(z − t)1−µ(z)φ
′′

i (t)dt+ α(z)φ
′

i(z) + β(z)φi(z) + γ(z)φi(τ(z))

Then, Eq. (3.12) can be rewritten as:

N∑
i=0

cihi(z) = f(z). (3.13)

Collocating Eq. (3.13) in N + 1 roots of the shifted Legendre polynomial PN+1(z), the
shifted Gauss-Legendre nodes, we will obtain:

N∑
i=0

cihi(zj) = f(zj), for j = 0, 1, . . . , N, (3.14)

which can be written in the following matrix form:

HTC = F,

where

F = [f(z0), f(z1), . . . , f(zN )]T ,

and

H = (hij), i, j = 0, 1, . . . , N, (3.15)

in which the entries of the matrix F are determined as follows:

hij = hi(zj), i, j = 0, 1, . . . , N.
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Finally, the unknown vector C can be computed by:

C = (HT )−1F.

Therefore, the approximate solution of Eq. (3.3) is given by VN (z) = CTϕ(z).
In the following algorithm, we present the necessary steps of the proposed scheme.

Remark 1. The choice of nodes to be the roots of the shifted Legendre polynomials has
the attraction, noted previously, that polynomial interpolation based on this set is relatively
well behaved; in sharp contrast to this is the known very bad behavior of interpolation based
on the equally spaced points (see [6]). The equally spaced case here yields very bad errors;
similarly, it is not covered by existing approach to the collocation method [29,36], except in
very special cases.

Algorithm 1 Coding algorithm for the proposed scheme

Input N ∈ N, ` ∈ R+; the functions α(z), β(z), γ(z), µ(z), τ(z) and g(z).
Step 1. Define the shifted Legendre polynomials by (2.1).
Step 2. Compute the basis function of shifted Legendre polynomials by (3.6).
Step 3. Define the basis function vector ϕ(z) by (3.10).
Step 4. Substituting Eqs. (1.2), (3.4) and (3.11) into Eq. (3.3).
Step 5. Collocating Eq. (3.13) in N + 1 roots of the polynomial PN+1(z).
Step 6. Compute the matrix H using (3.15).

Step 7. Define the (N + 1) unknown vector CT .

Step 8. Use NSolve command to solve the system HTC = F.

Output The approximate solution: VN (z) ' CTϕ(z).

4. Convergence and Error Analysis

In this part of the paper, we state and prove two theorems ascertain the convergence of
the proposed approximate solution, to be more precise, in the first theorem we find an upper
estimate for the expansion coefficients, in the second theorem, we find an estimate for the
L2−norm of the error.

Lemma 1. The basis functions {φi(z)} are orthogonal w.r.t. the positive weight function
w(z) = 1

z(`−z) , namely,∫ `

0

φi(z)φj(z)

z(`− z)
dz =

4(2i+ 3)

`(i+ 1)(i+ 2)
δij . (4.1)

Proof. By noting that φi(z) are related with shifted Jacobi polynomials as follows

φi(z) =
2(2i+ 3)

`2(i+ 1)
z(`− z)J (1,1)

i (z).

�
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Theorem 4.1. [8]The repeated integration of shifted Legendre polynomials is given by

∫ ∫
. . .

∫
︸ ︷︷ ︸
r−times

Pi(z) dzdz . . . dz︸ ︷︷ ︸
r−times

=
`4

4r

r∑
j=0

(
r
j

)
(−1)j

(i+ r − 2j + 1
2 )

Γ(i+ r − j + 3
2 )
Pi+r−2j(z). (4.2)

Theorem 4.2. Let V (z) is the exact solution of (3.3) which satisfy the homogenous bound-
ary conditions (3.2), V (z) = z(` − z)u(z), |u(3)(z)| ≤ M , and V (z) is approximated by

VN (z) =
∑N
i=0 ciφi(z). Then we will have

| ci |≤
`4M

16 i2
, ∀i ≥ 3.

Proof. From Lemma 1 we have,

ci =
`(i+ 1)(i+ 2)

4(2i+ 3)

∫ `

0

φi(z)VN (z)

z(`− z)
dz,

and therefore by the hypothesis of the theorem we have

ci =
`(i+ 1)(i+ 2)

4(2i+ 3)

∫ `

0

u(z)(Pi(z)− Pi+2(z))dz.

By applying integration by parts 3-times and using Theorem 4.1 for r = 3 we have

| ci |≤
M`4(i+ 1)(i+ 2)

2(2i− 3)(2i+ 1)(2i+ 5)(2i+ 9)
<
`4M

16 i2
.

�

Theorem 4.3. Let V (z) =
∑∞
i=0 ciφi(z) satisfies the hypothesis of theorem 4.2 and VN (z) =∑N

i=0 ciφi(z). Then we will have

‖ V − VN ‖2<
`

7
2M

4N2
.
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Proof. We have V =

∞∑
i=0

ci φi and VN =

N∑
i=0

ci φi,

and therefore V − VN =

∞∑
i=N+1

ci φi. Now, let

‖ V − VN ‖2 =
√
< V − VN , V − VN >

=‖
∞∑

i=N+1

ciφi(z) ‖2

=

√√√√<

∞∑
i=N+1

ci φi,

∞∑
j=N+1

cj φj >

by the orthogonality of {φi}

=

√√√√ ∞∑
i=N+1

c2i ‖ φi(z) ‖22

=

√√√√ ∞∑
i=N+1

4(2i+ 3)

`(i+ 1)(i+ 2)
c2i .

Then by the result of theorem 4.2 we will have

‖ V − VN ‖22 <
∞∑

i=N+1

M2`8(2i+ 3)

43`(i+ 1)(i+ 2)i4

<

∞∑
i=N+1

M2`7

4i(i+ 1)(i+ 2)(i+ 3)(i+ 4)

=
M2`7

16(N + 1)(N + 2)(N + 3)(N + 4)

<
M2`7

16N4
,

which completes the proof of the theorem. �

5. Numerical results

In this section two numerical examples are presented to confirm the accuracy of the
proposed method. Here, all the computations are carried out by using Mathematica, version
8.0,and all counts are completed in a PC of CPU Intel(R) Core(TM) i3-2350M 2 Duo CPU
2.30 GHz, 6.00 GB of RAM.

Example 1. ( [19]). Consider the accompanying variable-order fractional functional bound-
ary value problem of the form{

Dµ(z)v(z) + cos(z)v
′
(z) + 4v(z) + 5v( z

2

`2 ) = g(z), z ∈ [0, `],

v(0) = 0, v(`) = `2,



106 R. M. HAFEZ AND Y.H. YOUSSRI

Table 1. Comparison of the absolute errors at various choices of z, for
Example 1.

z RKM [19] SRKM [16] RKSM [38] our method
n = 40 n = 20 n = 40 N = 2

0.1 1.27× 10−8 1.17× 10−8 1.53× 10−14 1.38× 10−17

0.2 2.14× 10−8 1.77× 10−8 1.13× 10−14 5.55× 10−17

0.3 2.12× 10−8 2.17× 10−8 7.66× 10−15 5.55× 10−17

0.4 3.05× 10−8 2.39× 10−8 4.08× 10−15 5.55× 10−17

0.5 3.21× 10−8 2.45× 10−8 5.27× 10−16 0
0.6 3.25× 10−8 2.34× 10−8 2.66× 10−15 2.77× 10−17

0.7 3.20× 10−8 2.07× 10−8 6.21× 10−15 2.77× 10−17

0.8 3.87× 10−8 1.59× 10−8 9.65× 10−15 8.32× 10−17

0.9 5.30× 10−8 1.11× 10−8 1.28× 10−14 4.16× 10−17

0 20 40 60 80 100

0

2000

4000

6000

8000

10000

z

v
(z
)

approximate solution

Figure 1. Graph of exact solution and approximate solution at ` = 100
and N = 4 for Example 1.

where µ(z) =
5 + sin(z)

4
, g(z) =

2z2−µ(z)

Γ(3− µ(z))
+ 5z4

`4 +4z2 +2z cos(z). The exact solution is

v(z) = z2. Table 1 shows the maximum absolute errors by SLCM at N = 2. Our results also
are compared with the reproducing kernel method (RKM) in [19], the simplifed reproducing
kernel method (SRKM) in [16] and the reproducing kernel splines method (RKSM) in [38].
It is confirmed that the proposed method is more accurate than the RKM [19], SRKM [16]
and RKSM [38]. The Graph of analytical solution and approximate solution at ` = 100 and
N = 4 is displayed in Fig 1 to make it easier to compare with analytical solution. Absolute
errors obtained by SLCM, with ` = 100 and N = 4 are plotted in Fig 2.
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Figure 2. Graph of absolute errors at ` = 100 and N = 4 for Example 1.

Example 2. ( [19]). Consider the accompanying variable-order fractional functional bound-
ary value problem of the form{

Dµ(z)v(z) + ezv
′
(z) + 2v(z) + 8v(ez−1) = g(z), z ∈ [0, 1],

v(0) = 4, v(1) = 9,

where g(z) =
2z2−µ(z)

Γ(3− µ(z))
+ 2(z2 + 4z + 4) + 8(4ez−1 + e2z−2 + 4) + ez(2z + 4). The

exact solution is v(z) = z2 + 4z + 4. The proposed shifted Legendre collocation method

with µ(z) =
6 + cos(z)

4
, N = 2 was compared to the shifted Chebyshev operational matrix

(SCOM) [2]. Table 2 shows that the absolute errors obtained by the SLCM using few
numbers of the shifted Legendre polynomials is significantly better than that obtained by
SCOM [2]. Figure 3 shows the graphs of the absolute errors function between the exact and

approximate solutions with µ(z) =
20− ez

10
, N = 2.

6. Conclusions

A shifted Legendre collocation method for solving variable-order fractional functional
boundary value problem has been developed. This method uses shifted Gauss-Legendre
nodes to reduce the considered VO-FFDEs boundary value problem to the solution of a
matrix equation. The main advantage of the developed method relates to its high accu-
rate solutions with few numbers of retained modes. Numerical illustrations were given to
demonstrate the validity and applicability of the method. The results show that the pre-
sented method is simple and truthful.
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Table 2. Comparison of the absolute errors at various choices of z, for
Example 2.

z SCOM [2] our method
N = 10 N = 2

0.1 3.059× 10−16 2.024× 10−18

0.2 6.009× 10−17 2.921× 10−17

0.3 7.999× 10−18 1.227× 10−19

0.4 1.620× 10−16 2.615× 10−17

0.5 1.124× 10−16 2.274× 10−18

0.6 8.261× 10−18 1.895× 10−18

0.7 1.106× 10−16 6.415× 10−19

0.8 2.170× 10−16 5.637× 10−17

0.9 1.007× 10−16 2.933× 10−17

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10-16

1.×10-15

1.5×10-15

z

A
b
s
o
lu
te
e
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o
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Figure 3. Graph of absolute errors for Example 2 with µ(z) =
20− ez

10
, N = 2.
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