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Abstract In this paper, we establish Hadamard type fractional integral inequalities for a more
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1. INTRODUCTION AND PRELIMINARIES

Mathematics is an art of giving things misleading names. The beautiful and at
first glance mysterious name, the Fractional Calculus (FC) is just one of those mis-
nomers. A misnomer for the theory of operators of integration and differentiation
of arbitrary fractional order and their application. In 1871, Heaviside states that,
there is universe of mathematics lying between the complete differentiation and inte-
gration, and fractional operators push themselves forward sometimes and are just as
real as others. In recent decades, they have been found useful in various fields: rhe-
ology, quantitative biology, electro-chemistry, scattering theory, diffusion, transport
theory, probability, statistics, potential theory and elasticity. Nowadays, there exits
a great number of articles, surveys and several books, entirely devoted to FC (see,
[4, 5, 6,9, 17, 21, 22, 23]). The definition of RL fractional differentiation played an
important role in the development of FC. Here we give definition of RL fractional
integrals.

Received: 11 September 2018 ; Accepted: 23 February 2019.
x Corresponding author.

119



120 G. FARID, A. U. REHMAN, AND Q. U. AIN

Definition 1.1. Let f € Lq[a,b]. We define left and right RL fractional integral
I¢, f(x) and I;* f(x) of order o € R (a > 0) by

a _ Lt f)dt
I f(x) = F(a)/a G-t x> a,

and

b
I f(z) = Floz) /z 0 f(ta?ﬁta, x<b

(
respectively. Here I'() is the Euler’s Gamma function and I?, f(z) = I} f(z) =
f(@).

Many generalizations of RL fractional integral operators have been introduced. In
[20], Mubeen and Habibullah gave a slight generalization as RL k-fractional integrals:

Definition 1.2. Let f € Li[a,b]. Then we define left and right k-fractional RL
integrals Ij;kf(x) and I;,’kf(x) of order « and k > 0 by

a,k L 1 * f(t)dt
Ia+ f(x) T kI‘k(a)/H (a’,‘—t)%717 x> a,

o,k L 1 b f(t)dt
L2 f(x) = kl"k(a)/x G-z T < b,

where I';(a) is the k—Gamma function and Igff(m) = Il?ilf(x) = f(x).

In recent years the theory of inequalities in mathematical analysis via fractional
integral operators of different kinds has been introduced in fractional calculus (FC)
(see, [1,4,7,8,9,12, 13, 11, 14, 15, 16, 26, 27] and references in there). Inequalities
have a significant role in the field of convex analysis, while the classical Hadamard
inequality is equivalent to the definition of convex functions.

Definition 1.3. A function f : I — R, where I is an interval in R, is said to be
convex function if

flax + (1 —a)y) <af(x)+ (1 -a)f(y), z,y € [,a € [0,1].

Convex functions are generalized in many ways leading to very attractive results. In
[24], Ozdemir et el. introduced a generalized class of functions namely (h—m)—convex
functions.

Definition 1.4. Let J C R be an interval containing (0,1) and let A : J — R be a
non-negative function. We say that f : [0,b] — R is a (h — m)—convex function if f
is non-negative satisfying

flaz+m(1 —a)y) < h(a) f(z) + mh(1l - a)f(y).
and for suitable choice of h(a) and m = 1, the class of (h — m)—convex functions
reduces to the different known classes of convex functions.
B
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In Section 2, we prove k—fractional integral inequality of Hadamard type for (h —
m)—convex functions and deduce some related results. In Section 3, we prove a version
of k—fractional integral inequality of Hadamard type for functions like f so that |f'| is
(h — m)—convex whose derivative in absolute values are (h — m)—convex. In Section
4, we prove k—fractional integral inequality of Hadamard type for product of two
(h — m)—convex functions and also for the product of (o, h — m)—convex functions.
Also we find connection with some well known results.

2. HADAMARD TYPE INEQUALITIES FOR (h —m)—CONVEX FUNCTIONS VIA RL
k—FRACTIONAL INTEGRALS

In the following we give k—fractional integral inequalities of Hadamard type for
(h — m)—convex functions.

Theorem 2.1. Let f : [0,00) = R be a (h — m)—convex function with m € (0,1],
f € Lila,b], a,b € [0,00) where =, mb € [a,b]. Then we will have
bm + a 1 Fk a+k) [, K kool @
< ) -
175 <0(3) fapmags 1t = 521 ()]

1

S2h<;>{[ 2f( )+mf ]/0 t* L h(1 — t)dt (2.1)
+[mf () + f(a)] / t‘é—lh(t)dt} |

Proof. Since f is (h — m)—convex on [a, b], then

P55 <0 () s+ s € fa

Since %, mb € [a,b], then (1 —¢)% 4 tb < b and (1 — t)mb + ta > a. By setting
= (1 —t)% +tband v = m(1 — t)b + ta in the above inequality for ¢ € [0,1], then
by integrating over [0, 1] after multiplying with ¢% ~! we have

f (bm;L a) /1 Ry
0
<h (;) [/1tz1mf ((1 - t)% +tb) dt
0

+/1t‘é1f(m(1 —t)b—l—ta)dt} .
0

Now if we let w = (1—t)-> +tb and z = m(1 —t)b+ta in right side of above inequality,

we get
bm+ a
<
(M) <

() B s () o],

(e
BE
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Which completes the proof of first inequality in (2.1). On the other hand by using
the (h — m)—convexity of f, we have

mf ((1 - t)% —i—tb) 4 f(m(1— Db+ ta)

< m2h(1 = 1)f (5 ) +mh(0)f(8) + mh(1 = )£ (b) + h(t) (@),

By multiplying both sides of above inequality with «h (%) t%~1 and integrating over
[0, 1], after some calculations we get

0 (3) Foe [t () + o)

(mb—a)*

< %h (;) {[m{f (%) +mf(b)] /Olt%-lhu —t)dt

+[mf () + f(a)] / t?—lh(t)dt}

0
Which is the other side of the inequality (2.1). O

Corollary 2.2. In Theorem 2.1 with k = 1, leads to the following inequality for
(h — m)—convez function via RL fractional integrals

(552) () B2 )

mb — a)®

h (;) {[me (%) +mf(b)} /01 19 (1 — t)dt

+[mf(b) + f(a)] / ta_lh(t)dt}

0

Which leads to in above theorem we get [26, Theorem 2] stated in following corol-
lary if we take k =1, h(t) =t and m = 1.

Corollary 2.3. Let f : [a,b] — R be a positive function with 0 < a < b and f €
Lyla,b]. If f is a convex function on [a,b], then we will have

r(50) < etz sy + g s ) < HOHSO,

Another k—fractional integral inequality of Hadamard type for (h — m)—convex

function is obtained as follows.

Theorem 2.4. Let f : [0,00) = R be a (h — m)—convez function with m € (0, 1],
also let f € L1[a,b], a,b € [0,00). Then we will have

kElp(a) ok ok
Y 7 f(0) + 1,27 f(a)] (2.3)

< [f(a,)+f(b)}/01t%*1h(t)dt+m [f (%) +f(%)} /Olt%*lhu —t)dt

< (zp_;l) (/Ol(h(t))th)é [ soam (s (L) 40(2))].

(&)
EE
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where p™ ' +q¢ =1 and p > 1.
Proof. Since f is (h —m)—convex on [a, b], then for m € (0,1] and t € [0, 1], we have
flta+ (1 —6)b) + f((1 —t)a + tb)

< RO (@) + ()] + mh(1 — 1) f( ) ”)].

-1

from which multiplying both sides with ¢* ~! and integrating over [0, 1], we will have

/ 5 f(ta+ (1 - 0b) + F((1 - t)a + tb)]dt

0

< [f(a) + f(b)}/o tF = Un(t)dt +m [f (%) vy (%)} /01 £ Uh(1 — Dt

By changing variables we will have

nen l 1o £(b) + 10 £(a) (2.4)

(b—

S[f(a)+f(b)}/0 i ndem (1 (L) 47 (2)] [ ertho -

Which completes the proof of first inequality in (2.3). The second inequality in (2.3)
follows by using the Hdélder’s inequality

1

/Olt‘fil(h(t))dt < W (/Ol(h(t))th)q ,

Thus from (2.4) we will get (2.3). O

from this theorem, if we will put ¥ = 1 and m = 1, then we get [27, Theorem 2.1],
which is stated in the following corollary.

Corollary 2.5. Let f:[0,00) — R be h—convex function and f € Lq[a,b]. Then for
RL fractional integrals, we have
RGN
(b—a)*
1 1 q
< U@+ 10 [ 12 n) + - ojae < 2OEION o)
o (ap—p+1)7r MO

Theorem 2.6. Let f : [0,00) = R be a (h — m)—convex function with m € (0,1], h
be superaddtive and f € L1[a,b],a,b € [0,00). Then for RL k—fractional integrals we
have

(155 f(0) + I f(a)]

w[fi‘ff( )+ L2 ()]
fla) + 1 (b) F(2)+1(2) (2:5)
o (1328
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Proof. Since f is (h — m)—convex on [a, b], then for ¢ € [0, 1], we get
flta+ (1 —1)b) + f((1 — t)a + tb)

< [h(t) + h(1 —1)] lf(@;f(b) _’_m(f(,‘;);—f(ri))] |

Since h is superadditive, therefore
flta+ (1 —1)b) + f((1 — t)a + tb)

< b1 [Mm (ﬂ)w()ﬂ |

2 2

By multiplying both sides of above inequality with ¢% ~! and integrating over [0, 1],
we will have

/1 e [f(ta+ (1= 1)b) + f((1 — t)a + th))dt
< (D) lf(a) o, (f(:;) +f(f;)>] /ltgldt.
0

2
By substituting w = ta + (1 — ¢)b in left side of above inequality leads to (2.5). O

Corollary 2.7. In Theorem 2.6, if we take k = 1, then for (h —m)—convez function
via RL fractional integrals we get

Mla+1) . o
W[Imf(b) + 1" f(a)]

< h(1) [f(“);f(b) +m<f(sl);f(7i)>].

3. k—FRACTIONAL INTEGRAL INEQUALITY OF HADAMARD TYPE FOR FUNCTIONS
WHOSE DERIVATIVES ABSOLUTE VALUES ARE (h — m)—CONVEX

In the following k—fractional integral inequalities of Hadamard type for (h —
m)—convex function in terms of the first derivatives have been obtained. For next
result we use the following lemma.

Lemma 3.1. [9] Let function f : [a,b] — R be differentiable on interval (a,b). If
1’ € Lla,b], then we will have

fla)+ f(b)  Trla+k)
2 2(b—a)*

- b;a/o [(1—8)F —t¥]f (ta + (1 - t)b)dt.

Theorem 3.2. Let f : [0,00) — R be a function such that [a,b] C [0,00) and f €
Lila,b]. If |f| is an (h — m)—convex with m € (0,1] and h? € [0,1],q > 1. Then for
RL k—fractional integrals we will have

(&)

EE

(ISP F(0) + I  f(a)
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fla)+ f(®) Tpla+tk) ok
' 5 T 2b—a)f (955 F(b) + L0 £(a)) (3.1)
_ - ir@i+mlr ()] 28t v 1 g
- 2 2EPT(2p 4+ 1) 2xPtl(ay 1)
1 7 1 7
x VO (h(t))%dt| + /é(h(t))th] ]
where 1% + % =1.
Proof. By using (h — m)—convexity of | f’| and Lemma 3.1, we have
fla +f b) Tila+k) ank ak
' L )+ 1)
)& —t%||f (ta+ (1 — t)b)| dt.
Furthermore, we have
fla)+ f(b) Trla+k) ok p ok
' 5 T 2b—a)f 7 (10 f(0) + L2" f(a)] (3:2)
< b;“/j [(1_t)% _t%] {h(t)|f’(a) f (%)H dt
1
Jr/l [(1—t)% _t%] [h(t)|f’(a)|+mh(1—t) ’(%)H dt
a . 3 a e 3 a
{|f (a)}/O (L—t)%h(t)dt — | £'( )|/0 tk h(t)dt
(b 3 P ) Toa
+m (E) /0 (1—t)%h(1—t)dt f (m) /0 tkh(1—t)dt
1 1
+|f’(a)|/l t%h(t)dt—|f’(a)}/l(1—t)%h(t)dt
+m ’(%) /llt%h(l—t)dt—m 5 (%) /11(1_t)%h(1—t)dt}.
Now, by using the Holder’s inequality, we have
1 1
/ (1—t)%h(t)dt=/ t*h(1l — t)dt
0 1
2%pt+l _ 1 » 3 v
< q
< | ] Vo ol dt] |
a0
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and

% o ! o
/0 t h(t)dt/é(lt) h(1 — t)dt

Q=

1

<[] |

By using the above inequalities in the right hand side of (3.2), we get

[h(t)]qczt]

a,k a
: st LRI

<bfa pfrl_q |7
= @) 2fPH(ap )| kp“( p+1)

+m
2

s )(tere) )

After a little computation one can get inequality (3.1).

(&)
EE

'f(a>+f<b> _ Tila+k)

) (frwor)

) were)
/ 1[h<t>}th>

2Pt _
2k PH(2p 4 1)

J’_

P
2““( p+1)

(e s]
m 287 (2p+1)

Q=

-

P 1
2Pt _ 1
25 (2p+1)

P
2““( p+1)
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Corollary 3.3. Theorem 3.2 with k = 1 gives the result for (h-m)-convex functions
via RL fractional integrals, we will have

J@)+1() T+ ., .
2 2 —aye lar IO T (@)

(b—a) [l7'@l+m|r (%)]] [1 o0t o1 73 L
2 ‘ [{Q‘j"’l(apjl)] - |:20¢p+1(1ap+1):| :| X

1 b
/1(h(t))th] }

<

H/z(h(t))th
0

Corollary 3.4. If we put m = 1 and k = 1 in Theorem 3.2, then we have the
following inequality

b r
‘f(a) ;r fo) 5 (_O‘i)a (1%, £(b) + I f(a)]

1
q

+

2

L =) (@] + 11 O] “ 20pHl 1 ]5_

2 20rt1(ap + 1)

« [(/j[h(t)}%)q + (/;[h(t)]th> q} .

which is given in [27, Theorem 2.6]. Before, we prove next theorem, we need the
following lemma.

1 »
20p+1 (ap + 1)

Lemma 3.5. Let f : [a,mb] — R be a differentiable mapping on interval (a, mb) with
a <mb. If f' € Lila,mb], then for k—fractional integrals we will have

f(mb) + f(a)  kCp($+Fk), o .
3 amp ¥ et TmD) I f(a)
mb—a

1

5 / [(1—t)% —t%]f' (m(1 — )b+ ta)dt.
0

Proof. Consider the right hand side

mb;“/o (1= 8)F — 2]f (m(1 — )b+ ta)
mb—a

1
> [/O (1= )% f'(m(1 — t)b + ta)dt

1
7/ t% f'(m(1 t)btha)dt} .
0
One has

mb—a

. /O (1= )% f/(m(1 — )b+ ta)dt

b)) WT(EE) o
=T T b ayr )
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and
mb—a ' o,
5 )% f/(m(1l —t)b+ ta)dt
0
f®)  kCu(§ +K) ok
= — o I ! b
2 " 3(mb—a)f ot I (M)
Hence the required equality can be established. O

Theorem 3.6. Let f : [a,mb] — R be a function such that [a,mb] C [0,00) and
f € Lila,mb]. If |f'| is an (h — m)—convex with m € (0,1] and h? € [0,1],q > 1.
Then for RL k—fractional integrals we will have

'f(mb) +fla)  KTR(§ +K) (3.3)

a,k a,k
2 2mb — oy at 1m0 ) F(a))

< mb—a) [If' @ +m|f O |[_ 287 -1
B 2 287 (Ep+1)

x [(/02@@))%) "L </11(h(t))th) q} ,

|

P 1
2P (2p 4+ 1)
2
1,1 _
where >+ 1.

Proof. By using the property of modulus from Lemma 3.5, we will get

a,k a,k
3 S ayE Ui B £ (@)

1

'f(mb) +fla) k(£ F)

= D) )



CMDE Vol. 8, No. 1, 2020, pp. 119-140 129

By (h — m)—convexity of |f’|, we will have

’f(mb)Jrf(a) k(5 +K)
2 2(mb —a)*

<02t [T (= 0% =] a1 = )50+ 100 | @] e

0

+ﬁ [(L=)F —tE] [mA(L = 0) [F'(0)] + h(t) |’ (a)l] dt

2

(IS8 f(mb) + 1% f(a))

(3.4)

1

:mb {|f( ) l/2(1—t)%h(1—t)dt—/2t%@-t)dt]

+mlf ()] [/02(1 _OE R — /OE t‘ih(t)dt]

+1f'(a)| [/llt‘ih(l —t)dt — /11(1 —t)kh(1 - t)dt]

ftihu — t)dt — /11(1 —t)%h(1 —t)dt] }

Now, by using the Holder’s inequality in the right hand side of (3.4), we will get

(194 F(mb) + I f(a)]

f(mb) + f(a)  kTk(§ +K)
2 2(m b—a)k

mb—a , 2rPtl _q v
<= {lf@' mw

p
2kp+1 p+1
N ofptl _q 7
2%p+1(%p+1)

i
) < /11[h(t)}“dt> ] l
) ( /;[hu)]th) '

P 1
2R ep

, 2Pl 1
+m|f (b)| |:(|:2kp+1( p+ )

1
p

[wp*%z 8

+
i1 1
2kPTH -1 P
T ——— h(t)]dt .
- < 2uP T (%p 4 1) 2kp+1( p+1) ) </ IR > ]}
By some manipulation one can get inequality (3.3). g
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Corollary 3.7. In Theorem 3.6 if we take k = 1, we get the following inequality for
(h — m)—convez function via RL fractional integrals

S g S+ 1 (@)

<0mwwmo+mwwm{[2w“1}i{ 1 }1
- 2 20r+1(ap + 1) 20t (ap + 1)

xKAltmm> (/maw@ }

4. RL k-FRACTIONAL INTEGRAL INEQUALITIES OF HADAMARD TYPE FOR
PRODUCT OF TWO (h — m)—CONVEX FUNCTIONS

‘f(mb)Jrf(a) Fla+1)

Now, we obtain some Hadamard type inequalities for products of two (h—m)—convex
functions via RL k—fractional integrals.

Theorem 4.1. Let f,g : [0,00) — R be functions such that fg € Lila,b], a,b €

[0,00), a < b. If function f is (hy —m)—convex and function g is (ha — m)—convex
on [0,00) with m € (0,1], then for RL k—fractional integrals we have

wmng’ (5 () ()

- O [ mmto) + 1 ()0 ()
<m (1@ () + @] [ i 0na(1 -

b 1000 (1) 41 () 9] [ 0500 = 0pr -
U9t + 1@ )] [ 1 m@matoar

e [0 a0+ () o(@) / oty (1~ f)d.

Proof. We can write

(5225

_; (at+m2( (1 - t)c2l+mtb)
" g(at+m§1 )+(1—t)62z+mtb>.

2D
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From (h; —m)—convexity of f and (hy — m)—convexity of g, we will have

(50 (52)

2
. (;) [f (at +m(1 = t)b) +mf ((1 —t)% +tb)]
)

[g (at +m(1 —t)b) +mg ((1 - t)% + tb)}

=M (;) hs (;) {f (at +m(1 — t)b) g (at + m(1 — t)b)

+m2f((1—t)%+tb)g(( t)— —l—tb)
+mf(at+m(1—t)b)g((1 H= +tb)

+mf ((1 —t)% +tb)g( t+m(l - t)b)}

Thus we obtain

( +2mb)g< +2mb>
ghl(;)h (>{f(t+

(L=t 1) g (1= )+ 1b)

+ m2hy () ha(1 — ){f( )9( ) (m)g(:@ﬂ
(= ona -0 | () o () + 7 () s (2)]

B (B)halt) [f <:z) 9(a) + f(a)g <:z>]
o ) o

m(1 —t)b) g (at +m(1 —t)b)
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By multiplying both sides of above inequality with ¢% ~! and integrating over [0, 1],

we have
1 a+b a+b /1 oy
tEldt
hl(é)hz(é)f< 2 >g< 2 > 0

s gt ()0 ()]
<m|f(@g (5) + 1 D)9 ) / £ (D ho(1— t)dt

e (1000 (15) 4 (%) 90)] [ #5000 -0
+[f(b) g(a) + f(a)g (b)] /0 1 t% = hy () ho(t)dt

+m[f ) g0)+f(=5) 9(0)] / (s (1 — ).

0

After a little computation one can have the required result. O

Corollary 4.2. For k = 1, theorem 4.1 gives the following inequality for (h —
m)—convez function via RL fractional integrals

1 a+b a+b
wamy’ () (%)
- oy (g gty 4 g g (2) g (2]

<ty () + 1 ®r9w)] [ e Oha(1 -

0

+m? [ 0)g () + 1 (-5) 9 0] / (L= a1
+[f () 9la) + f(a)g (b)) / 1 (1)

e [1 090+ 1 () o] [ ham - o

0

Theorem 4.3. Let f,g : [0,00) — R be functions such that fg € Li[a,b], a,b €
[0,00), a < b. If function f is (h — mq)—convex and function g is (h — mg)— convex
on [0, 00) with my, mo € (0, 1], then the following inequalities hold for RL k— fractional
integrals

(&)
EE
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(’;Fj(‘;‘i [la’kf(b)g(b)+I°‘_”“f(a)g(a)] (4.2
< [f@g(a) + £ [ o8 2 0ar

s [f (m%) () = () o )] o2 =
e e (55 0 (G )] o oenr ()00 (55)]}

fE-1
></0 h(H)h(1 — t)dt

: (Sp—p+1) (Sp—p+1)3 {(/ h2e(t dt)é [f(a)g(a)+m1m2f<mil)g(rs2)

+F(b)g(b) +mimaf (mil) g (m%)} + (/Ol(h(t)h(l - zs))qch:)é «

[mzf(a)g (W%) +mag(a)f (mil) +maf(b)g (n%) +mig(b)f (mil)} },

1 1 _
wherep>1and5+5f1.

Proof. Since function f is (h —my)—convex and function g is (h —mg)—convex, then
for ¢ € [0,1], we have

F(ta+ (1 —t)b)g(ta + (1 — t)b)

< 1O f(@ala) + maf(@g (o ) HOR(L 1)
b

m1> BB — 1) + myms f (nfl) ; <£2> M1t

By multiplying both sides of above inequality with ¢% ~! and integrating over [0, 1],
we have

——

/1 t& =L f(ta+ (1 — t)b)g(ta + (1 — t)b)dt
0

< flata) | 20 dt+ maf(a)g ( b ) / (Rt

ma

+migla)f (%) /01 t* “Lh(t)h(1 — t)dt

b b b,
+mimaf <m1> g <m2> / te 1 h2(1 — t)dt.
0
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By substituting z = ta + (1 — t)b in left side of above inequality, we get

EDR(Q) ok
m1a+ f(b)g(b)

— f(a)g(a) /1t%—1h2(t)dt+m2f(a)g< b )/1t%—1h(t)h(1—t)dt

0 ma 0

+mlg(a)f( b )/1t‘é—1h(t)h(1—t)dt

0
AW AAY T
0

By using the Holder’s inequality, we will have

mq

1

1 1 7
/t‘é—th(t)dt§11</ th(t)dt) ,
0 (gp—p+1)7 \Jo

and similarly
1 o 1 1 %
/ tt h(t)A(l - t)dt = ——— (/ (h(t)h(1 — t))th> .
0 (zp—p+1)¥ \Jo
Thus we will get

kTy ()
(b—a)*

Soroyl R UR2(0)dt 4 maf(a)a (mi) / L Th(OR(L — 1)
+maigla)f <mi1) /01 (F T h(0)A(L — t)dt

+mimaf (mil) g (n%) /Olt%*th(l —t)dt

et () oo s (2)o(2)

+(/ "(h()h(1 — t))%ht)é [mes(@s (o) +ms@s (o] } .

124 F(b)g(b)

(&)
EE

(4.3)
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Similarly, by changing the roles of a and b, after a little computation one can get
kD (a )
w—)*“*

a 1.
Sf@ﬁ@A ’”Wﬁﬁ+mﬁwm&a)/t?*mwm—ﬂﬁ
t% " h(t)h(1 — t)dt

+mw®fC%)0 i
mil) g (m%) /O t% " h2(1 = t)dt
< W {(/Olhzq( )dt) [f(b) (b) + mamaf (mil) g (m%”
+ 1(h(t)h(l —t))%dt g maf(b)g a +migb)f a .
0 o —

Adding (4.3) and(4.4), we get the required result. O

fla)g(a) (4.4)

+m17mf(

For k = 1, h(t) = t this theorem gives [25, Theorem 8], which is stated in the
following corollary.

Corollary 4.4. Let f,g : [0,00) — [0,00), [a,b] C [0,00) be functions such that
fg € Li[a,b]. If f is mi—conver and g is ma—convex on [a,b] with mi, ms € (0,1],
then one has

PO _jo ppygp) < L@ol) __ mo f(a)g(b> (4.5)

(b—a)> a+2 (a+1)(a+2) ma
@ () s ers? () o ()

and
(@) o f(b)g(b) my a
et gl < LD g () (4.6
mi a 2mimo a a
et @i’ ()f< ) amaners? () ()
Proof. Taking (4.3) for k = 1 and h(t) = t, we get (4.5). Similarly using k = 1 and
h(t) =t in (4.4), we get (4. ) O

In the following we give Hadamard type inequality for the product of two (a, h —
m)—convex via RL k—fractional integral. The following definition is needed

Definition 4.5. Let J C R be an interval containing (0,1) and let h: J — R be a
non-negative function. We say that f : [0,b] — R is a (o, h — m)—convex function, if
f is non-negative and for all z,y € [0,b], (o, m) € [0,1]? and ¢ € (0, 1), one has

[tz +m(1 —t)y) <h(t*)f(x) +mh(l —1%)f(y).

For suitable choice of «, h(t) and m = 1, class of («, h —m)—convex functions reduces
to the different known classes of convex functions.

(e
BE
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Theorem 4.6. Let f,g : [0,00) — R be functions such that fg € Lila,b], a,b €
[0,00). If f is (a1,h — mq)—convex and function g is (aa,h — mg)—convex on

[0,00) with (a1,m1) and (a2, m2) € (0,1]2, then the following inequalities hold for
RL k—fractional integrals

klk(a) [.a, o
B [ 0)90) + 2 (@)oo (4.7)

sLﬂ@mw+fwmwn/t%*uwwmwﬂﬁ

0

a1 () o ()4 () o ()]
y /Oltzlhu —1)h(1 — £2)dt + {m2 {f(“)g <£2> + 0 <£Q>}

+ma [g(a)f (Tsl) +gb)f (Tzl)] } /01 t& L h(t2)h(1 — t21)dt.

Proof. Since function f is (ay, h—my)—convex and function g is (ag, h—ms)—convex,
therefore for t € [0, 1], we have

flta+ (L —=t)b)g(ta+ (1 —t)b)

<Mﬁﬁmﬁﬂﬁ@mw+mwﬂ®g(b>h@“Mﬂ—fT

mao

mg(a)f () hiee)n(1 - )

+mimaf <rrlz1> g <T:;> h(1 —t*)h(1 —t*2).

By multiplying both sides of the above inequality with ¢t% ~! and integrating over
[0, 1], we will have

/1 tE = f(ta+ (1 — t)b)g(ta + (1 — t)b)dt
0

gﬂ@mmﬁﬂiwwmmwwa+mﬁwm(£)
/01 PR A1 — 192)dt + myg(a) f <£1) /01 LR h(1 — 1) dt

1
+mimaf (rf;) g (722) / tR TR — ) h(1 — t92)dt.
0

2D
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By substituting g = ta + (1 — ¢)b in left side of above inequality we will get

kl“k(a)
(b—a)*

< f(a)g(a) / PRt (102t

0

1255 £ (b)g(b) (4.8)

ma

+maf(a)g (b> /01 t& LRt ) h(1 — t2)dt
+mag(a)f (b> /1 t& T h(te2)h(1 — t21)dt

my 0

1
+mamaf (ﬂi) g <Ts> / t% 7 h(1 — t*)h(1 — t*2)dt,
1 2 0

and similarly, changing the roles of a and b, after a little computation one can get

krk: (OZ) a,
m—raff(a)g(a) (4.9)

< FB)g) [ 15 (e b

0

1
/ t* IRt )h(1 — t92)dt

0

+maf(b)g <a>

)
a

+mag(b)f <> /1 t& L h(te2)h(1 — t21)dt

my 0

1
+ mimaf (n‘:) g <ﬂj > / 7 1h(1 — 2 R(1 — t°2)dt.
1 2 0

Adding (4.8) and(4.9), we get the required result. O

If we put k = 1, h(t) = t this theorem gives [25, Theorem 12], which is stated in
the following corollary.

Corollary 4.7. Let f,g:[0,00) — [0,00), be functions such that fg € Li]a,b],a,b €

[0,00),a < b. If f is (a1, m1)—convex and g is (a2, ma) — convex on [a,b] with
EE
BE
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(a1, m1), (ag, ma) € (0,1]2 respectively, then we will have

I g0 (410)
1 o31 b
= mf(a)g(a) + (@ +a)(o+as+a) maf(a)g <m2>

aq

T ata( Fas vy 9@/ <nl;1>

1 1 1 1 b b
+ == - + mimaf{—)g| — |,
o o+ Qaq o+ a9 a1+ oo+« mi mo

and
T @) (1.11)
1 aq b
< mf(b)g(b) + o Tont a)mzf(b)g <mg>

(65} b
+ ol TaT a)m1g(b)f <ml>

1 1 1 1 a a
+ - - — + mimof | — g — ).
o o+ oy o+ ao a1 +as + « mq mo

Proof. From (4.8) for k = 1 and h(t) = ¢, we get (4.10). Similarly, using k¥ = 1 and
h(t) =t in (4.9), we get (4.11). O

CONCLUSION

In this study some of the general versions of Hadamard inequality are analyzed
in fractional calculus. A generalization of convex functions; namely (h — m)—convex
function is used to establish these results. Some identities have been established which
are further utilized in the formation of Hadamard type inequalities. Furthermore,
Hadamard type inequalities for product of two (h — m)—convex functions have been
studied and connection with already published results is investigated.
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