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Abstract In this article we consider, impulsive initial value problems for a class of implicit
fractional differential equations involving the Caputo fractional derivative of order

β ∈ (1, 2]. The solutions of this nonlinear equation are analyzed by establishing

sufficient conditions for existence and uniqueness using Banach’s contraction map-
ping principle and the Schaefer’s fixed point theorem. In addition, using the Banach

contraction principle, we establish uniqueness result. To demonstrate main results
two examples are presented.
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1. Introduction

The theory of fractional calculus has received remarkable consideration from the
researchers of widespread fields of science and engineering due its applicability of de-
scribing the hereditary and memory effect of numerous processes arise in mathematical
modeling of many nonlinear phenomena which includes aerodynamics, thermodynam-
ics, diffusion processes, control theory, blood flow phenomena, electromagnetic and
many more, see the monographs [2, 13, 14, 15, 17]. The analysis of these types of
initial and boundry value problems involving fractional differential operators plays
significant role in finding applications to many realistic problems. Several numerical
and analytical methods are suggested to find exact and approximate solutions of non-
linear fractional differential equations [8, 9, 11, 18, 19, 20].
Moreover, the study of impulsive fractional differential equations has turned out to
be significant object of research as of late due to its extensive applications to numer-
ous physical phenomena in nature like the impact of mechanical systems, dynamical
systems with automatic regulations, electromechanical systems having relaxation os-
cillations, the function of pendulum clock, and so forth are governed by impulsive
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fractional differential equations [3, 16, 21, 24]. These equations gives natural descrip-
tion of the processes of development subjected to unexpected changes and irregular
jumps in their states and present a realistic outline for describing several mathematical
models. Many mathematicians contributed in development of existence, uniqueness
and stability results of solution for fractional differential equations with impulses
[1, 4, 5, 12, 22, 23].
In [7], Benchohra and Slimani considered the impulsive initial value problem to find
existence and uniqueness criteria of solutions,

cDβu(t) = f(t, u(t)), t ∈ Ω = [0, T ],

t 6= tj , j = 1, 2, · · ·,m, β ∈ (0, 1],

∆u|t=tj = Ij(u(t−j )), j = 1, 2, · · ·,m
u(0) = u0,

where cDβ is the Caputo fractional derivative, f : Ω×R→ R is continuous function,
u(0) = u0 ∈ R, Ij : R→ R, j = 1, 2, · · ·,m, and 0 = t0 < t1 < t2 < · · · < tj < · · · <
tm < tm+1 = T .
In [6], Benchohra and Lazreg have discussed fractional order impulsive differential
equations

cDβu(t) = f(t, u(t), Dβu(t)) t ∈ Ω = [0, T ],

t 6= tj , j = 1, 2, · · ·,m, β ∈ (0, 1],

∆u|t=tj = Ij(u(t−j )), j = 1, 2, · · ·,m
u(0) = u0,

where cDβ is the Caputo fractional derivative, f : Ω× R2 → R is a continuous func-
tion, u(0) = u0 ∈ R, Ij : R→ R, j = 1, 2, · · ·,m, and 0 = t0 < t1 < t2 < · · · < tj <
· · · < tm < tm+1 = T .

Motivated by some ongoing work on impulsive fractional differential equation, in
this paper, we explore the existence and uniqueness results for the implicit fractional
differential equations with impulses:

cDβu(t) = f(t, u(t), Dβu(t)), t ∈ Ω = [0, T ], (1.1)

t 6= tj , j = 1, 2, · · ·,m, β ∈ (1, 2]

∆u|t=tj = Ij(u(t−j )), j = 1, 2, · · ·,m (1.2)

∆u′|t=tj = Īj(u(t−j )), j = 1, 2, · · ·,m (1.3)

u(0) = u0, u
′(0) = u1, (1.4)

where cDβ signifies the Caputo fractional derivative, f : Ω× R2 → R is a given con-
tinuous function, u(0) = u0, u

′(0) = u1 ∈ R, Ij , Īj : R→ R, j = 1, 2, · · ·,m, and 0 =
t0 < t1 < t2 < · · · < tj < · · · < tm < tm+1 = T , ∆u|t=tj = u(t+

j )− u(t−j ), u(t+
j ) =

lim
ζ→0+

u(tj + ζ) and u(t−j ) = lim
ζ→0−

u(tj + ζ) shows the right and left limits of u(t) at
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t = tj , j = 1, 2, · · ·,m.

The rest of this paper is sorted out as follows. In Section 2, some helpful funda-
mental definitions and introductory results which will be required to demonstrate our
principle hypotheses are displayed. In Section 3, we center around the verification of
main results of existence and uniqueness criteria by utilizing Schaefer’s fixed point
theorem. In Section 4, two examples are introduced to represent the fundamental
outcomes.

2. Preliminaries

Throughout this article we denote C(Ω,R) as the Banach space of all continuous
functions with the norm ‖u‖∞ = sup{|u(t)| : t ∈ Ω}.

Further, we introduce the Banach space

PC(Ω,R) =
{
u : Ω→ R/u ∈ C((ti, ti+1],R), i = 0, 1, · · ·,m in addtion

there exists u(t−i )and u(t+
i ), i = 1, 2, · · ·,m with u(t−i ) = u(t+

i )
}
.

PC(Ω,R) is the Banach space with the norm ‖u‖PC = sup
t∈Ω
|u(t)|.

Set Ω′ := [0, T ] \ {t1, t2, · · ·, tm}.

Definition 2.1. ([14]) The Riemann-Liouville fractional integral operator of order
β ∈ R+ for the function f ∈ L1([a, b],R+) is defined as,

Iβa f(t) =
1

Γ(β)

∫ t

a

(t− x)β−1f(x)dx, t > a.

Definition 2.2. ([14]) The Caputo fractional derivative operator for the function
f ∈ L1([a, b],R+), is defined for order β ≥ 0 by

Dβ
t f(t) =

1

Γ(n− β)

∫ t

a

(t− x)n−β−1 d
n

dxn
f(x)dx, t > a,

where n− 1 < β ≤ n ∈ N ∪ {0}.

Proposition 2.3. [14] For α, β > 0. We have
(i) Iβ : L1([0, T ],R+)→ L1([0, T ],R+), and if f ∈ L1([0, T ],R+), then

IαIβf(t) = IβIαf(t) = Iα+βf(t).

(ii) If f ∈ LP ([0, T ], R+), 1 ≤ p ≤ +∞, then ‖Iβf‖Lp ≤ Tβ

Γ(β+1)‖f‖Lp .
(iii) lim

β→n
Iβf(t) = Inf(t), n = 1, 2, · · ·. uniformly.

We state the following theorems

Theorem 2.4. ([10]) For non-empty closed subset U of a Banach space X, any con-
traction mapping F of U into itself has a unique fixed point.
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Theorem 2.5. [10] Let X be a Banach space, and assume that F : X → X is a
completely continuous operator with the set S is bounded, where

S = {u ∈ X|u = θFu, for some θ ∈ (0, 1)}

then F has fixed point.

The above theorem is known as Schaefer’s fixed point theorem. Motivated from [5],
for further analysis we consider the following hypothesis are satisfied.

(H1) Consider the function f : Ω× R2 → R is continuous.
(H2) There exists constants A > 0 and 0 < B < 1, such that

|f(t, x1, x2)− f(t, y1, y2)| ≤ A|x1 − y1|+B|x2 − y2|,

∀t ∈ Ω and x1, x2, y1, y2 ∈ R.
(H3) For all x, y ∈ R, and t ∈ Ω, there exists constants κ, κ̄ > 0 such that

|Ij(x)− Ij(y)| ≤ κ|x− y|,
and

|Īj(x)− Īj(y)| ≤ κ̄|x− y|, j = 1, 2, · · ·,m.

3. Main results

Definition 3.1. A function u ∈ PC(Ω,R) is said to be a solution of (1.1)-(1.4)
with its β-derivative if u satisfies the equation cDβu(t) = f(t, u(t)) on Ω, and the
conditions

∆u|t=tj = Ij(u(t−j )),

∆u′|t=tj = Īj(u(t−j )),

u(0) = u0, u
′(0) = u1,

are satisfied for j = 1, 2, · · ·,m.

Lemma 3.2. [25] The differential equation

cDβp(t) = 0, β > 0, (3.1)

has solutions p(t) = k0+k1t+k2t
2+···+kntn−1, n = [β]+1, ki ∈ R, i = 0, 1, 2, ···, n.

Lemma 3.3. [25]. Let β > 0, then

IβDβp(t) = p(t) + k0 + k1t + k2t
2 + · · ·+ kntn−1, (3.2)

for n = [β] + 1 and ki ∈ R, i = 0, 1, 2, · · ·, n.
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Lemma 3.4. [1] Let p:Ω→ R is continuous and 1 < β ≤ 2. A function u is a solution
of the impulsive fractional integral equation

u(t) =



u0 + u1t + 1
Γ(β)

∫
t

0
(t− τ)β−1p(τ)dτ for t ∈ [0, t1],

u0 + u1t + 1
Γ(β)

∑j
k=1

∫
tk

tk−1

(tk − τ)β−1p(τ)dτ+

+ 1
Γ(β−1)

∑j
k=1(t− tk)

∫
tk

tk−1

(tk − τ)β−2p(τ)dτ+

+ 1
Γ(β)

∫
t

tk
(t− τ)β−1p(τ)dτ+

+
∑j
k=1 Ik(u(t−k )) +

∑j
k=1(t− tk)Īk(u(t−k )),

for t ∈ (tj , tj+1], j = 1, 2, · · ·,m,

(3.3)

if and only if u is a solution of the impulsive fractional IVP

cDβu(t) = p(t) t ∈ Ω′ = [0, T ], (3.4)

t 6= tj , β ∈ (1, 2]

∆u|t=tj = Ij(u(t−j )), (3.5)

∆u′|t=tj = Īj(u(t−j )), j = 1, 2, · · ·,m (3.6)

u(0) = u0 u
′(0) = u1. (3.7)

Theorem 3.5. Suppose that (H1), (H2) and (H3) hold. If

(m(1 + β) + 1)AT β

(1−B)Γ(β + 1)
+m(κ+ T κ̄) < 1, (3.8)

then impulsive fractional IVP (1.1)-(1.4) possesses a unique solution on Ω.

Proof. We define the operator H by rewriting the equations (1.1)-(1.4) as a fixed
point problem given by z : PC(Ω,R)→ PC(Ω,R) as

z(u)(t) = u0 + u1t +
1

Γ(β)

∑
0<tj<t

∫ tj

tj−1

(tj − τ)β−1f(τ, u(τ), Dβu(τ))dτ

+
1

Γ(β − 1)

∑
0<tj<t

(t− tj)

∫ tj

tj−1

(tj − τ)β−2f(τ, u(τ), Dβu(τ))dτ

+
1

Γ(β)

∫ t

tj

(t− τ)β−1f(τ, u(τ), Dβu(τ))dτ

+
∑

0<tj<t

Ij(u(t−j )) +
∑

0<tj<t

(t− tj)Īj(u(t−j )). (3.9)
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We define σ, ξ ∈ C(Ω,R) by σ(t) = Dβu(t) and ξ(t) = Dβv(t), hence
we get σ(t) = f(t, u(t), σ(t)) and ξ(t) = f(t, v(t), ξ(t)).
It is obvious that the solutions of the equations (1.1)-(1.4) are the fixed points of the
operator z. Next, We prove that z is a contraction.
Let u, v ∈ PC(Ω,R), for every t ∈ Ω we get,

| z(u)(t)−z(v)(t) |≤ 1

Γ(β)

∑
0<tj<t

∫ tj

tj−1

(tj − τ)β−1 | σ(τ)− ξ(τ) | dτ

+
1

Γ(β − 1)

∑
0<tj<t

(t− tj)

∫ tj

tj−1

(tj − τ)β−2 | σ(τ)− ξ(τ) | dτ

+
1

Γ(β)

∫ t

tj

(t− τ)β−1 | σ(τ)− ξ(τ) | dτ

+
∑

0<tj<t

|Ij(u(t−j ))− Ij(v(t−j ))|+
∑

0<tj<t

(t− tj)|Īj(u(t−j ))− Īj(v(t−j ))|.

By (H2) we have,

| σ(t)− ξ(t) | = |f(t, u(t), σ(t))− f(t, v(t), ξ(t))|
≤ A|u(t)− v(t)|+B|σ(t)− ξ(t)|,

hence we get

| σ(t)− ξ(t) |≤ A

1−B
|u(t)− v(t)|.

For t ∈ Ω,

| z(u)(t)−z(v)(t) |≤

≤ A

(1−B)Γ(β)

∑
0<tj<t

∫ tj

tj−1

(tj − τ)β−1 | u(τ)− v(τ) | dτ+

+
A

(1−B)Γ(β − 1)

∑
0<tj<t

(t− tj)

∫ tj

tj−1

(tj − τ)β−2 | u(τ)− v(τ) | dτ+

+
A

(1−B)Γ(β)

∫ t

tj

(t− τ)β−1 | u(τ)− v(τ) | dτ+

+ κ
∑

0<tj<t

|(u(t−j ))− (v(t−j ))|+ κ̄
∑

0<tj<t

(t− tj)|(u(t−j ))− (v(t−j ))|

≤ mAT β

(1−B)Γ(β + 1)
‖u− v‖PC +

mAT β

(1−B)Γ(β)
‖u− v‖PC+

+
AT β

(1−B)Γ(β + 1)
‖u− v‖PC +mκ‖u− v‖PC +mκ̄T‖u− v‖PC

=

[
mAT β

(1−B)Γ(β + 1)
+

mAT β

(1−B)Γ(β)
+

AT β

(1−B)Γ(β + 1)
+m(κ+κ̄T )

]
‖u−v‖PC .
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Thus

| z(u)(t)−z(v)(t) |≤
[

(m(1 + β) + 1)AT β

(1−B)Γ(β + 1)
+m(κ+ T κ̄)

]
‖u− v‖PC .

Consequently, by (3.8) z is a contraction. Hence z has a fixed point by Banach fixed
point theorem. �

Theorem 3.6. Suppose that (H1), (H2), (H3) and following assumptions hold

(H4) There exist constants r, h, q ∈ C(Ω,R+) with q∗ = sup
t∈Ω

q(t) < 1

such that

|f(t, u, v)| ≤ r(t) + h(t)|u|+ q(t)|v|, ∀ t ∈ Ω and u, v ∈ R.
(H5) The functions Ij , Īj : R→ R are continuous for some constants

η, ζ, η̄, ζ̄ > 0, ∀u∈ R j = 1, 2, · · ·,m, such as

|Ij(u)| ≤ η|u|+ ζ and |Īj(u)| ≤ η̄|u|+ ζ̄,

(m+mβ + 1)h∗T β

(1− q∗)Γ(β + 1)
+mη +mTη̄ < 1.

Then IVP (1.1)-(1.4) has at least one solution in Ω.

Proof. We prove this result in four steps by using the Schaefer’s fixed point theorem.
Step 1. We show that z is continuous for a sequence un such that un → u in
PC(Ω,R). For any t ∈ Ω,

| z(un)(t)−z(u)(t) |≤

≤ 1

Γ(β)

∑
0<tj<t

∫ tj

tj−1

(tj − τ)β−1 | σn(τ)− σ(τ) | dτ+

+
1

Γ(β − 1)

∑
0<tj<t

(t− tj)

∫ tj

tj−1

(tj − τ)β−2 | σn(τ)− σ(τ) | dτ+

+
1

Γ(β)

∫ t

tj

(t− τ)β−1 | σn(τ)− σ(τ) | dτ+

+
∑

0<tj<t

|Ij(un(t−j ))− Ij(u(t−j ))|+
∑

0<tj<t

(t− tj)|Īj(un(t−j ))− Īj(u(t−j ))|,

where σnand σ ∈ C(Ω,R) and given by

σn(t) = f(t, un(t), σn(t)) σ(t) = f(t, u(t), σ(t)).

By (H2) we get

| σn(t)− σ(t) | = |f(t, un(t), σn(t))− f(t, u(t), σ(t))|
≤ A|un(t)− u(t)|+B|σn(t)− σ(t)|,

Hence we get

| σn(t)− σ(t) |≤ A

1−B
|un(t)− u(t)|.
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Since un → u , we get σn(t)→ σ(t) as n→∞ for each t ∈ Ω. For δ > 0 and for any
t ∈ Ω, we get |σn(t)| ≤ δ and |σ(t)| ≤ δ. Therefore, we have

(t− τ)β−1|σn(τ)− σ(τ)| ≤ (t− τ)β−1[|σn(τ)|+ |σ(τ)|]

≤ 2δ(t− τ)β−1

and

(tk − τ)β−1|σn(τ)− σ(τ)| ≤ (tk − τ)β−1[|σn(τ)|+ |σ(τ)|]

≤ 2δ(tk − τ)β−1.

For each t ∈ Ω, the functions τ → 2δ(t−τ)β−1and τ → 2δ(tk−τ)β−1 are integrable on
[0, t], hence equation (3.7) and the Lebesgue dominated convergence theorem imply
that

| z(un)(t)−z(u)(t) |→ 0 as n→∞

and hence

‖z(un)(t)−z(u)(t)‖ → 0 as n→∞

consequently, H is continuous.

Step 2. Next we prove boundedness of z in PC(Ω,R). Indeed, we show that for
any R > 0, there is some positive constant K such that for every u ∈ BR = {u ∈
PC(Ω,R) : ‖u‖PC ≤ R}, we have ‖z(u)‖PC ≤ K. For each t ∈ Ω we have,

|z(u)(t)| ≤ |u0|+ Tu1 +
1

Γ(β)

∑
0<tj<t

∫ tj

tj−1

(tj − τ)β−1|σ(τ)|dτ

+
1

Γ(β − 1)

∑
0<tj<t

(t− tj)

∫ tj

tj−1

(tj − τ)β−2|σ(τ)|dτ

+
1

Γ(β)

∫ t

tj

(t− τ)β−1|σ(τ)|dτ

+
∑

0<tj<t

|Ij(u(t−j ))|+
∑

0<tj<t

(t− tj)|Īj(u(t−j ))|, (3.10)

where σ ∈ C(Ω,R) is such that
σ(t) = f(t, u(t), σ(t)).

By (H4) for each t ∈ Ω,

|σ(t)| = |f(t, u(t), σ(t))|
≤ r(t) + h(t)|u(t)|+ q(t)|σ(t)|
≤ r(t) + h(t)R+ q(t)|σ(t)|
≤ r∗ + h∗R+ q∗|σ(t)|,
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where r∗ = sup
t∈Ω

r∗(t), and h∗ = sup
t∈Ω

h∗(t). Then

|σ(t)| ≤ r∗ + h∗R

1− q∗
:= L.

Thus equation (3.10) gives

|z(u)(t)| ≤ |u0|+ T |u1|+
mLT β

Γ(β + 1)
+
mLT β

Γ(β)
+

mT β

Γ(β + 1)
+

+m(η|u|+ ζ) +mT (η̄|u|+ ζ̄)

≤ |u0|+ T |u1|+
mLT β

Γ(β + 1)
+
mLT β

Γ(β)
+

LT β

Γ(β + 1)
+

+m(ηR+ ζ) +mT (η̄R+ ζ̄),

hence

‖z(u)‖PC ≤ |u0|+ T |u1|+
[

(m+mβ + 1)T βL

Γ(β + 1)

]
+

+m[(ηR+ ζ) + T (η̄R+ ζ̄)] := K.

Step 3: Here we prove z maps bounded sets of PC(Ω,R) into equicontinuous sets.

Let x1, x2 ∈ Ω, x1 < x2, BR be a bounded set of PC(Ω,R) and take u ∈ BR.
This gives

| z(u)(x2)−z(u)(x1) |≤

≤ 1

Γ(β)

∫ x1

0

∣∣(x2 − τ)β−1 − (x1 − τ)β−1
∣∣|σ(τ)|dτ

+
1

Γ(β)

∫ x2

x1

∣∣(x2 − τ)β−1
∣∣|σ(τ)|dτ

+
1

Γ(β − 1)

∑
0<tj<x2−x1

(x2 − tj)

∫ ti

tj−1

(tj − τ)β−2|σ(τ)|dτ

+
1

Γ(β − 1)

∑
0<tj<x1

(x2 − x1)

∫ ti

tj−1

(tj − τ)β−2|σ(τ)|dτ

+

∫ x2

x1

(x2 − τ)β−1|σ(τ)|dτ +

∫ x1

tj

∣∣(x2 − τ)β−1 − (x1 − τ)β−1
∣∣|σ(τ)|dτ

+
∑

0<tj<x2−x1

∣∣Ij(u(t−j ))
∣∣+

∑
0<tj<x2−x1

(x2 − tj)
∣∣Īj(u(t−j ))

∣∣
+(x2 − x1)

∑
0<tj<x1

∣∣Īj(u(t−j ))
∣∣,

where σ ∈ C(Ω,R) is such that
σ(t) = f(t, u(t), σ(t)).



150 A. S. SHAIKH AND B. R. SONTAKKE

Whenever x1 → x2, the RHS of the inequality approaches to zero, consequently by us-
ing Arzelá-Ascoli theorem and above steps 1 to 3 the map z : PC(Ω,R)→ PC(Ω,R)
is completely continuous.
Step 4: A priori bounds.
In this step we prove that the set
D = {u ∈ PC(Ω,R)|u = θz(u), for some θ ∈ (0, 1)} is bounded. Consider u ∈ D,
where u = θz(u) for some θ ∈ (0, 1). Then for every t ∈ Ω, we have

u(t) = θu0 + θT |u1|+
θ

Γ(β)

∑
0<tj<t

∫ tj

tj−1

(tj − τ)β−1f(τ, u(τ), Dβu(τ))dτ

+
θ

Γ(β − 1)

∑
0<tj<t

(t− tj)

∫ tj

tj−1

(tj − τ)β−2f(τ, u(τ), Dβu(τ))dτ

+
θ

Γ(β)

∫ t

tj

(t− τ)β−1f(τ, u(τ), Dβu(τ))dτ

+ θ
∑

0<tj<t

Ij(u(t−j )) + θ
∑

0<tj<t

(t− tj)Īj(u(t−j )). (3.11)

By (H4) for each t ∈ Ω, we get

|σ(t)| = |f(t, u(t), σ(t))|
≤ r(t) + h(t)|u(t)|+ q(t)|σ(t)|
≤ r∗ + h∗|u(t)|+ q∗|σ(t)|,

where r∗ = sup
t∈Ω

r∗(t), and h∗ = sup
t∈Ω

h∗(t). Then

|σ(t)| ≤ r∗ + h∗|u(t)|
1− q∗

.

By (H4) and (H5), for every t∈ Ω, we have

|u(t)| ≤ |u0|+ T |u1|+
mT β

Γ(β + 1)

(
r∗ + h∗|u(t)|

1− q∗

)
+
mT β

Γ(β)

(
r∗ + h∗|u(t)|

1− q∗

)
+

T β

Γ(β + 1)

(
r∗ + h∗|u(t)|

1− q∗

)
+m(η|u(t)|

+m(η|u(t)|+ ζ) +mT (η̄|u(t)|+ ζ̄).

Hence

‖u(t)‖PC ≤ |u0|+ T |u1|+
mT β

Γ(β + 1)

(
r∗ + h∗‖u(t)‖PC

1− q∗

)
+

+
mT β

Γ(β)

(
r∗ + h∗‖u(t)‖PC

1− q∗

)
+

T β

Γ(β + 1)

(
r∗ + h∗‖u(t)‖PC

1− q∗

)
+

+m(η‖u(t)‖PC + ζ) +mT (η̄‖u(t)‖PC + ζ̄).
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This gives

‖u(t)‖PC ≤
|u0|+ T |u1|+ (m+mβ+1)r∗Tβ

(1−q∗)Γ(β+1) +m(ζ + T ζ̄)

1− (m+mβ+1)h∗Tβ

(1−q∗)Γ(β+1) −m(η + T η̄)
: R.

This gives the set D is bounded and consequently H has a fixed point. �

4. Illustration

To demonstrate the applicability of Theorems 3.1 and 3.2, we present two examples.

Example 4.1. Consider the following fractional initial value problem with impulses:

cDβu(t) =
1

9et+2(1 + |u(t)|+ |cDβu(t)|)
, (4.1)

∆u|t= 1
2

=
|u( 1

2

−
)|

30 + |u( 1
2

−
)|
, (4.2)

∆u′|t= 1
2

=
|u( 1

2

−
)|

50 + |u( 1
2

−
)|
, (4.3)

u(0) = u′(0) = 0, (4.4)

for t ∈ Ω = [0, 1], t 6= 1
2 , 1 < β ≤ 2.

Set

f(t, x, y) =
1

9et+2(1 + x1 + x2)
, t ∈ Ω = [0, 1], x1, x2 ∈ [0,∞),

Ik(x) =
x1

30 + x1
,

Īk(x) =
x1

50 + x1
.

Let x1, x2, x̄1, x̄2 ∈ [0,∞) and t ∈ Ω. Then we have

|f(t, x1, x2)− f(t, x̄1, x̄2)| = 1

9et+2

∣∣∣∣ 1

1 + x1 + x2
− 1

1 + x̄1 + x̄2

∣∣∣∣
=

|x1 − x̄1|+ |x2 − x̄2|
9et+2(1 + x1 + x2)(1 + x̄1 + x̄2)

≤ |x1 − x̄1|+ |x2 − x̄2|
9et+2

≤ 1

9e2
(|x1 − x̄1|+ |x2 − x̄2|).

Hence the condition (H2) holds with A = B = 1
9e2 . Also we have

|Ik(x1)− Ik(x2)| =
∣∣∣∣ x1

30 + x1
− x2

30 + x2

∣∣∣∣ =
30|x1 − x2|

(30 + x1)(30 + x2)

≤ 1

30
|x1 − x2|
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and

|Īk(x1)− Īk(x2)| ≤ 1

50
|x1 − x2|,

therefore the condition (H3) verified with κ = 1
30 and κ̄ = 1

50 . Indeed, we will see
that the condition (3.8) is fulfilled with T = 1 and m = 1.

(m(1 + β) + 1)AT β

(1−B)Γ(β + 1)
+m(κ+ T κ̄) =

(
(β + 2) 1

9e2(
1− 1

9e2

)
Γ(β + 1)

+
1

30
+

1

50

)
=

(
β + 2(

9e2 − 1
)
Γ(β + 1)

+
1

30
+

1

50

)
< 0.09913,

which is satisfied for any β ∈ (1, 2]. Hence by Theorem 3.1 the Eqs. (4.1)-(4.4) has a
unique solution on Ω.

Example 4.2. Consider following fractional initial value problem with impulses:

cDβu(t) =
3 + |u(t)|+ |cDβu(t)|

81et+3(1 + |u(t)|+ |cDβu(t)|)
, (4.5)

∆u|t= 1
2

=
|u( 1

3

−
)|

7 + |u( 1
3

−
)|
, (4.6)

∆u′|t= 1
2

=
|u( 1

3

−
)|

11 + |u( 1
3

−
)|
, (4.7)

u(0) = u′(0) = 0, (4.8)

for t ∈ Ω = [0, 1], t 6= 1
2 , 1 < β ≤ 2.

Set

f(t, x1, x2) =
3 + x1 + x2

81et+3(1 + x1 + x2)
, t ∈ Ω = [0, 1], x1, x2 ∈ [0,∞),

obviously the function f is mutually continuous. For any x1, x2, x̄1, x̄2 ∈ [0,∞)
and t ∈ Ω,

|f(t, x1, x2)− f(t, x̄1, x̄2)| ≤ 1

81e3
(|x1 − x̄1|+ |x2 − x̄2|).

Hence, condition (H2) is satisfied with A = B = 1
81e3 . For each t ∈ [0, 1],

|f(t, x1, x2)| ≤ 1

81e3
(3 + x1 + x2).

Thus condition (H4) is satisfied with r(t) = 1
27et+3 and h(t) = q(t) = 1

81et+3 . Let

Ik(x1) =
x1

7 + x1
, Īk(x1) =

x1

11 + x1
,

therefore for each x1 ∈ [0,∞), |Ik(x1)| = 1
7x1 + 1, and |Īk(x1)| = 1

11x1 + 1.

Thus condition (H5) is satisfied with η = 1
7 , ζ = 1, η̄ = 1

11 , ζ̄ = 1. Hence the
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condition

(m+mβ + 1)h∗T β

(1− q∗)Γ(β + 1)
+mη +mTη̄ =

(
(β + 2) 1

81e3(
1− 1

81e3

)
Γ(β + 1)

+
1

7
+

1

11

)
=

(
β + 2(

81e3 − 1
)
Γ(β + 1)

+
1

7
+

1

11

)
< 0.2356,

is satisfied for any β ∈ (1, 2]. Hence by Theorem 3.2 the Eqs. (4.5)-(4.8) has a unique
solution on Ω.

5. Conclusion

In this article, sufficient condition for the existence and impulsive initial value
problems for a class of implicit fractional differential equations involving the Caputo
fractional derivative were obtained using Banach’s contraction mapping principle and
the Schaefer’s fixed-point theorem. Obtained results were illustrated using two initial
value problems of fractional order. We conclude that the present method to anal-
yse impulsive implicit fractional differential equations is most reliable and efficient,
moreover it can be used in various differential equations of fractional order arising in
mathematical modelling of several real-life problems.
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