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Abstract This paper investigates the inverse problem of determining the time-dependent heat

source and the temperature for the heat equation with Dirichlet boundary conditions
and an integral over-determination conditions. The numerical method is presented

for solving the Inverse problem. Shifted Chebyshev polynomial is used to approxi-

mate the solution of the equation as a base of the tau method which is based on the
Chebyshev operational matrices. The main advantage of this method is based upon

reducing the partial differential equation into a system of algebraic equations of the

solution. Numerical results are presented and discussed.
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1. Introduction

The inverse problems for heat equation arise in many physical and engineering
problems, and they can be roughly divided into three principal classes.

(1) Backward or reversed-time problem: the initial condition is to be found [16,
26].

(2) Coefficient inverse problem: this is a classical parameter problem where a
multiplier in the governing equation is to be found [1, 5, 8, 11, 17, 22, 24, 25,
27].

(3) Boundary inverse problem: some missing information at the boundary of the
domain is to be found [10, 18, 19, 23].
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In this paper, we consider the following heat equation:

ut(x, t) = uxx(x, t) + p(t)u(x, t) + q(x, t), 0 < x < L, 0 < t ≤ τ, (1.1)

with initial condition

u (x, 0) = f (x) , 0 < x < L, (1.2)

and the Dirichlet boundary conditions

u (0, t) = g1 (t) , 0 < t ≤ τ, (1.3)

u (L, t) = g2 (t) , 0 < t ≤ τ, (1.4)

subject to the integral over-specification of the function k (x)u (x, t) over the spatial
domain (energy over-specification)∫ 1

0

k (x)u (x, t) dx = E (t) , 0 ≤ t ≤ τ (1.5)

where q (x, t) , f (x) , g1 (t) , g2 (t) , k (x) , E (t) 6= 0 are given functions. Also, it is as-
sumed that for constant ρ > 0 the kernel k (x) satisfies∫ 1

0

|k (x)| dx ≤ ρ.

If the function p (t) is known, the problem of finding u (x, t) from (1.1)-(1.4) is called
the direct problem. However, the problem here is that the source parameter p (t)
is unknown, which needs to be determined by energy condition (1.5). This problem
(1.1)–(1.5) is called the inverse problem.
There is a fundamental difference between the direct and inverse problems. It is
known that an inverse problem is not well posed in general while the direct problem
is well posed. The existence and uniqueness of this inverse problem are discussed in
[4, 6, 13, 15, 17, 20]. In [6, 7, 11, 17, 21] the solution of this problem and similar
problems are investigated. Some numerical methods are presented in [11, 17] for
solving this problem. In [17], the author used the high order scheme for the solution
of inverse problem (1.1)–(1.5). Also, the numerical methods suggested in [11] are
based on the optimal homotopy analysis method (OHAM) is designed.
The aim of this research is presenting a numerical method for solving Equations (1.1)–
(1.5) by using shifted Chebyshev Tau method. The main idea of the current work is
to apply the shifted Chebyshev polynomials, the operational matrix of derivative and
integration together with the tau method to get a linear system of algebraic equa-
tions thus greatly simplifying the problem. Moreover, we have applied the proposed
algorithm to the numerical example in order to confirm the accuracy of this algorithm.
The current article is organized as follows: In the next section we will introduce
some necessary definitions, and give some relevant properties of shifted Chebyshev
polynomials. Section 3 summarizes the application of the shifted Chebyshev-tau
method to offer solution for the problems (1.1)–(1.5). As a result, a system of algebraic
equations is formed and the solution of the considered problem is introduced. In
Section 4, numerical results are given to clarify the method. Finally, a conclusion is
given in Section 5.
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2. Properties of shifted Chebyshev polynomials

The well-known shifted Chebyshev polynomials are defined on the interval [0, 1]
and can be determined with the aid of the following recurrence formulae:

TL,0 (x) = 1, TL,1 (x) =
2x

L
− 1,

TL,j (x) = 2

(
2x

L
− 1

)
TL,j−1 (x)− TL,j−2 (x) , j = 2, 3, ..., n. (2.1)

The following formula for the jth degree of TL,j (x)

TL,j (x) = j

j∑
k=0

(−1)
j−k (j + k − 1)!22k

(j − k)! (2k)!Lk
xk, j = 1, 2, 3, ..., n, (2.2)

where TL,j (0) = (−1)
j

and TL,j (L) = 1.
The orthogonality condition is∫ L

0

TL,j (x)TL,k (x)wL (x) dx = hj , (2.3)

where

wL (x) =
1√

Lx− x2
, (2.4)

and

hj =


εj
2 π , k = j,

0 , k 6= j,
ε0 = 2, εj = 1; j ≥ 1. (2.5)

A function u (x, t) of two independent variables defined for 0 < x < L, 0 < t ≤ τ may
be expanded into the shifted Chebyshev polynomials as:

u (x, t) =

∞∑
i=0

∞∑
j=0

aijTτ,i (t)TL,j (x) . (2.6)

If the infinite series in (2.6) is truncated, then it can be written as:

um,n (x, t) '
m∑
i=0

n∑
j=0

aijTτ,i (t)TL,j (x) = ψT (t)Aφ (x) , (2.7)

where the shifted Chebyshev vectors ψ (t) and φ (x) and the shifted Chebyshev coef-
ficient matrix A are given as:

ψ (t) = [Tτ,0 (t) , Tτ,1 (t) , ..., Tτ,m (t)]
T
,

φ (x) = [TL,0 (x) , TL,1 (x) , ..., TL,n (x)]
T
, (2.8)

A =


a00 a01 · · · a0n
a10 a11 · · · a1n
...

... · · ·
...

am0 am1 · · · amn


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where

aij =
1

hihj

∫ τ

0

∫ L

0

u (x, t)Tτ,i (t)TL,j (x)wτ (t)wL (x) dxdt, (2.9)

i = 0, 1, ...,m, j = 0, 1, ..., n.

Theorem 2.1. The first derivative of the shifted Chebyshev vector φ (x) may be
expressed by [2, 3, 9, 14]

dφ (x)

dx
= D(1)φ (x) , (2.10)

where D(1) is the (n+ 1)× (n+ 1) operational matrix of derivative given by

D(1) = dij =


4i
εjL

j = i− k,

 k = 1, 3, ..., n

k = 1, 3, ..., n− 1

if (n) is odd

if (n) is even
0 otherwise

(2.11)

where ε0 = 2, εj = 1, j ≥ 1 .

For example, for odd n given as:

D =
2

L



0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 4 0 · · · 0 0 0
3 0 6 · · · 0 0 0
...

...
...

. . .
...

...
...

0 2 (n− 1) 0 · · · 2 (n− 1) 0 0
n 0 2n · · · 0 2n 0


and for even n given as:

D =
2

L



0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 4 0 · · · 0 0 0
3 0 6 · · · 0 0 0
...

...
...

. . .
...

...
...

n− 1 0 2 (n− 1) · · · 2 (n− 1) 0 0
0 2n 0 · · · 0 2n 0


Remark 2.2. The operational matrix for the nth derivative can be derived as [7, 9]

dnφ (x)

dxn
=
(
D(1)

)n
φ (x) , (2.12)

where n ∈ N and the superscript in D(1) , denotes matrix powers. Thus

Dn =
(
D(1)

)n
, n = 1, 2, ... (2.13)
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Theorem 2.3. The integration of ψτ,m (t) may be written as [23, 25]∫ t

0

ψ (t′) dt′ ' Pψ (t) , (2.14)

where P is the (m+ 1)× (m+ 1) shifted Chebyshev operational matrix of integration
and is given by

p =



w0 δ0 0 0 0 · · · 0 0
w1 0 λ1 0 0 · · · 0 0
w2 δ2 0 λ2 0 · · · 0 0
w3 0 δ3 0 λ3 · · · 0 0
...

...
...

. . .
. . .

. . .
...

...

wm−2 0 0 0
. . .

. . . λm−2 0

wm−1 0 0 0 0
. . . 0 λm−1

wm 0 0 0 0 · · · δm 0


, (2.15)

where

wk =



τ
2 , k = 0

−τ
8 , k = 1

(−1)k+1τ
2(k−1)(k+1) , k = 2, 3, ...

, δk =



τ
2 , k = 0

0 , k = 1

−τ
4(k−1) , k = 2, 3, ...

,

λk =


0 , k = 0

τ
8 , k = 1

τ
4(k+1) , k = 2, 3, ...

(2.16)

Obviously similar to (2.14) we have∫ x

0

φ (x′) dx′ ' Gφ (x) , (2.17)

where G is the (n+ 1) × (n+ 1) shifted Chebyshev operational matrix of integration
and is defined similar to (2.15).

3. The numerical scheme

In this section, we will use the tau approximation together with the shifted Cheby-
shev operational matrix for solving inverse parabolic problems (1.1)-(1.5). We approx-
imate u (x, t) , q (x, t) and f (x) by using the shifted Chebyshev operational matrix
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as:

um,n (x, t) = ψT (t)Aφ (x) , (3.1)

qm,n (x, t) '
m∑
i=0

n∑
j=0

qijTτ,i (t)TL,j (x) = ψT (t)Qφ (x) ,

f (x) '
n∑
j=0

fjTL,j (x) = ψT (t)Fφ (x) ,

where A is an unknown (m+ 1)×(n+ 1) matrix, Q and F are known (m+ 1)×(n+ 1)
matrices, as

Q =


q00 q01 · · · q0n
q01 q11 · · · q1n
...

...
...

...
qm0 qm1 · · · qmn

 , F =


f0 f1 · · · fn−1 fn
0 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 0

 , (3.2)

where

qij =
1

hihj

∫ τ

0

∫ L

0

q (x, t)Tτ,i (t)TL,j (x)wτ (t)wL (x) dxdt, (3.3)

i = 0, 1, ...,m, j = 0, 1, ..., n

and

fj =
1

hj

∫ L

0

f (x)TL,j (x)wL (x) dx, j = 0, 1, ..., n. (3.4)

Integrating equation (1.1) from 0 to t and using equation (1.2) (see [7, 9]), we have

u (x, t)− f (x) =

∫ t

o

uxx (x, t′) dt′ +

∫ t

o

p (t′)u (x, t′) dt′ +

∫ t

o

q (x, t′) dt′. (3.5)

Using equations (2.7), (2.12) and (2.14) we get∫ t

o

uxx (x, t′) dt′ =

(∫ t

o

ψT (t′) dt′
)
A

(
d2φ (x)

dx2

)
= ψT (t)PTAD2φ (x) . (3.6)

The function p (t) may be expanded in terms of m+ 1 shifted Chebyshev series as

p (t) =
m∑
k=0

bkTτ,k (t) = BTψ (t) , (3.7)

where B = [b0, b1, ..., bm]
T

is an unknown vector.
Now, using equations (2.5), (2.12) and (3.7) we have∫ t

o

p (t′)u (x, t′) dt′ =

(∫ t

o

BTψ (t′)ψT (t′) dt′
)
Aφ (x) . (3.8)

Let

BTψ (t)ψT (t) = ψT (t)H, (3.9)
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where H is an (m+ 1)×(m+ 1) matrix. To find H, we rewrite equation (3.9) (see[23])
in the form

m∑
k=0

bkTτ,k (t)Tτ,j (t) =

m∑
k=0

HkjTτ,k (t) , j = 0, 1, ...,m. (3.10)

Multiplying the both sides of (3.10) by Tτ,i (t)wτ (t) , i = 0, 1, ...,m and integrating
from 0 to τ yield

m∑
k=0

bk

∫ τ

0

Tτ,i (t)Tτ,k (t)Tτ,j (t)wτ (t) dt

=

m∑
k=0

Hkj

∫ τ

0

Tτ,k (t)Tτ,i (t)wτ (t) dt, i, j = 0, 1, ...,m. (3.11)

Using equation (3.11) and employing the orthogonality relation (2.3) give

m∑
k=0

bk

∫ τ

0

Tτ,i (t)Tτ,k (t)Tτ,j (t)wτ (t) dt = Hijhi,

or equivalently

Hij =
1

hi

m∑
k=0

bk

∫ τ

0

Tτ,i (t)Tτ,k (t)Tτ,j (t)wτ (t) dt, i, j = 0, 1, ...,m. (3.12)

Employing equations (2.14), (3.8) and equation (3.9) can be written as∫ t

o

p (t′)u (x, t′) dt′ = ψT (t)PTHAφ (x) . (3.13)

Also by using equations (2.7), (2.14) and (3.1) (see [23]), we get∫ t

o

q (x, t′) dt′ =

(∫ t

0

ψT (t′) dt′
)
Qφ (x) = ψT (t)PTQφ (x) . (3.14)

Applying equations (2.7), (3.1), (3.6), (3.13) and (3.14) the residual Rm,n (x, t) for
equation (3.5) can be written as

Rm,n (x, t) = ψT (t)
[
A− F − PTHA− PTAD2 − PTQ

]
φ (x) = 0.

Let

Z =
[
A− F − PTHA− PTAD2 − PTQ

]
,

then we have

ψT (t)Zφ (x) = 0. (3.15)

As in a typical Tau method, we generate (m+ 1)×(n− 1) linear algebraic equations
using the following algebraic equations

Zij = 0, i = 0, 1, ...,m, j = 0, 1, ..., n− 2. (3.16)
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Also, by substituting equations (3.1) and (3.7) in equations (1.3)-(1.4) we get

ψT (t)Aφ (0) = g1 (t) , (3.17)

ψT (t)Aφ (L) = g2 (t) . (3.18)

And applying (3.1) in equation (1.5), we have∫ 1

0

k (x)u (x, t) dx = ψT (t)A

(∫ 1

0

k (x)φ (x) dx

)
= E (t) . (3.19)

Let’s assume that

I =

∫ 1

0

k (x)φ (x) dx, (3.20)

and

I = [I0, I1, I2, ..., In]
T
, i = 0, 1, 2, ..., n (3.21)

with

Ii =

∫ 1

0

k (x)φi (x) dx, (3.22)

that

k (x) '
n∑
j=0

kjTL,j (x) = ψT (t)Kφ (x) , (3.23)

and K is known (m+ 1)× (n+ 1) matrix below

K =


k0 k1 · · · kn−1 kn
0 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · 0 0

 ,
that is

kj =
1

hj

∫ L

0

k (x)TL,j (x)wL (x) dx. (3.24)

Now applying equations (3.20)-(3.24) in equation (3.19), we have

ψT (t)AI = E (t) . (3.25)

Equations (3.17), (3.18) and (3.25) are collocated at m + 1 points. For suitable
collocation points, we use the shifted Chebyshev roots ti , i = 1, 2, ...,m + 1 of
Tτ,m+1 (t). The number of the unknown coefficients aij , i = 0, 1, ...,m, j = 0, 1, ..., n
and bk, k = 0, 1, ...,m is equal to (m+ 1) (n+ 1) + (m+ 1) and can be obtained
from equations (3.16)-(3.18) and (3.25). Consequently u (x, t) given in equation (2.7)
and p (t) given in equation (3.7) can be calculated.
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Figure 1. Plot of error for |um,n (x, 1)− u (x, 1)| with m = n = 4, 8.

Figure 2. Plot of error for |pm (t)− p (t)| with m = n = 2, 8.

4. Numerical results

In this section, we illustrate the use of our algorithm by displaying the results
obtained from its application to a test problem. In this case the exact solution u (x, t)
and p (t) to the problem are known, we will report the accuracy and efficiency of the
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Figure 3. Plot of error |um,n (x, 1)− u (x, 1)| for x = 0.1 and x =
0.9 with various value of m = n.

Figure 4. Plot of error |pm (t)− p (t)| for t = 0.1 and t = 0.9 with
various value of m.

shifted chebyshev-Tau method based on absolute errors eu and ep defined as:

eu = |um,n (x, t)− u (x, t)| , ep = |pm (t)− p (t)|

.
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Example 4.1. The inverse problem (1.1)–(1.5) with the following conditions:

τ = 1, L = 1,
q (x, t) = exp (t)

(
x+ cos (πx) + π2cos (πx)

)
− exp (t)

(
1 + t2

)
(x+ cos (πx)) ,

f (x) = x+ cos (πx) ,
g1 (t) = exp (t) ,
g2 (t) = 0,
E (t) = exp

(
3
4 −

2
π2

)
,

k (x) = 1 + x2

The exact solution of the problem is u (x, t) = exp (t) (x+ cosπx) and p (t) = 1 + t2,
see [17, 11].

We solved the problem by applying the method described in Section 3. We re-
port the absolute error of |um,n (x, 1)− u (x, 1)| and |pm (t)− p (t)| for m = n =
4, 6, 8 in Tables 1 and 2, respectively. Figure 1 shows the absolute error function
|um,n (x, 1)− u (x, 1)| at different space for m = n = 4, 8 . In addition, Figure 2
shows the absolute error function |pm (t)− p (t)| at different time for m = n = 2, 8.
Also, Figure 3 and Figure 4 illustrate the numerical results of the error function
|um,n (x, 1)− u (x, 1)| and |pm (t)− p (t)| by increasing of m and n in 0.1 and 0.9.

The obtained results showed that this approach can solve the problem effectively.
The described computational method produces very accurate results even when em-
ploying a small number of collocation points.

Table 1. Results for u (x, 1) and the absolute error
|um,n (x, 1)− u (x, 1)| form Example.

x exact error
u (x, 1) m = n = 4 m = n = 6 m = n = 8

0.1 2.8571e+00 3.3395e-04 8.5616e-06 1.0265e-07

0.2 2.7428e+00 2.1271e-04 3.3107e-08 1.1036e-09

0.3 2.4133e+00 1.4184e-04 1.7740e-06 7.0921e-09

0.4 1.9273e+00 1.6643e-04 3.7018e-06 4.4484e-08

0.5 1.3591e+00 2.4769e-04 1.7070e-05 2.8897e-06

0.6 7.9097e-01 1.4388e-05 2.4996e-07 2.2013e-09

0.7 3.0503e-01 2.2960e-05 2.4139e-07 2.6079e-09

0.8 -2.4511e-02 1.8292e-07 5.9385e-10 1.8227e-11

0.9 -1.3879e-01 1.1727e-05 2.8145e-07 9.8509e-09

5. Conclusion

In this article, the inverse problem of finding the time-dependent heat source and
the temperature for the heat equation, under the Dirichlet boundary condition and
the integral over-specification of the function k (x)u (x, t) have been investigated.
An efficient direct solver method is developed for solving such problems using the
shifted Cheyshev-Tau method. The construction of the proposed algorithm is based
on the Tau approximation in addition to the shifted Chebyshev operational matrix.
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Table 2. Results for p (t) and absolute error |pm (t)− p (t)| form Example.

t exact error
p (t) m = 4 m = 6 m = 8

0.1 1.0100e+00 9.5029e-04 1.4864e-05 2.8458e-07

0.2 1.0400e+00 6.8131e-04 1.3393e-07 4.4644e-09

0.3 1.0900e+00 1.1442e-03 1.3743e-05 5.4910e-08

0.4 1.1600e+00 3.2483e-03 4.0245e-04 1.3798e-06

0.5 1.2500e+00 1.5113e-02 7.5872e-04 1.2867e-07

0.6 1.3600e+00 1.1035e-03 2.1054e-05 4.3196e-08

0.7 1.4900e+00 1.0017e-03 8.1872e-06 1.1354e-07

0.8 1.6400e+00 7.4802e-05 2.4329e-07 7.4621e-09

0.9 1.8100e+00 6.3590e-04 2.2886e-05 8.9241e-07

Illustrative numerical example with satisfactory approximate solutions is achieved to
demonstrate the accuracy of method. The numerical results in Section 4 demonstrate
the good accuracy of the described method. Moreover, only a small number of shifted
Chebyshev polynomials is needed to obtain a satisfactory solution.
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