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Abstract Traditional logistic regression is plugged with degenerates and violent behavior in
high-dimensional classification, because of the problem of non-invertible matrices in

estimating model parameters. In this paper, to overcome the high-dimensionality
of data, we introduce two new algorithms. First, we improve the efficiency of finite
population Bayesian bootstrapping logistic regression classifier by using the rule of
majority vote. Second, using simple random sampling without replacement to select

a smaller number of covariates rather than the sample size and applying traditional
logistic regression, we introduce the other new algorithm for high-dimensional binary
classification. We compare the proposed algorithms with the regularized logistic
regression models and two other classification algorithms, i.e., naive Bayes and K-

nearest neighbors using both simulated and real data.
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1. Introduction

In recent years, high-dimension classification in which the number of variables p
is often greater than the sample size n, has been one of the most critical issues in
the multivariate statistical analysis and the supervised learning techniques. Because
of the curse of dimensionality [2] traditional classifiers such as logistic regression,
despite their real accuracy, are not usable for High-Dimension Data Classification
(HDDC). Furthermore, well-known classifiers for HDDC such as Naive Bayes (NB)
and K-Nearest Neighbors (KNN; [4]) have restrictive assumptions such as conditional
independence or overfitting in HDDC.

One of the ways to resolve the non-invertible matrices problem and overcome the
lack of training data in HDDC can be amplify data [26, 28]. In this technique,
generated data is added to available data to increase the sample size. Chawla et
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al. [3] use the synthetic minority oversampling technique to increase the accuracy of
classifier in imbalanced data with adding data to minor class and reduce data from
the major class. Zhang et al. [26] prove that by using a multichannel autoencoder
process to generate data, it is possible to train a better feature representation for
classification.

Some researchers have tried to use the Traditional Logistic Regression Classifier
(TLRC) for HDDC. Logistic Regression Ensembles (LORENS; [19]), random subspace
sampling [25], developing LORENS for the high-dimensional multiclass classification
[16], are some of these algorithms. Zarei et al. [28] for the first time used Finite Popu-
lation Bayesian Bootstrapping (FPBB; [20]) in HDDC. They used FPBB to generate
data of size m, 30 times and added the average of generated data to the available
sample and called them “synthetic data”. In this synthetic data p < n +m, so one
can use TLRC to classify the data. Furthermore, they used Sufficient Dimension Re-
duction (SDR) via Sliced Inverse Regression (SIR; [17]) to overcome non-convergence
problem of numerical algorithms that may occur when the parameters of TLRC are
estimated. We show their algorithm with FPBBLRC. In the FPBBLRC algorithm,
after generating synthetic data and applying SIR, traditional logistic regression for
classifying high-dimensional binary data is used. As we explain in Section 3, we make
changes in the FPBBLRC method and improve the efficiency of this algorithm.

Ensemble Learning with Selection Variable (ELSV) which is based on generating
multiple diverse variable selectors and combining their outputs, is another way for
HDDC. These methods are widely used to improve accuracy of classification algo-
rithms in statistics and machine learning. For a complete review of ELSV, one can
see [12] and references therein. We develop ELSV for HDDC in Section 4. Our second
algorithm is an ELSV algorithm. In fact, based on the selection of variables with the
simple random sampling without replacement and using TLRC, a new algorithm for
HDDC is given.

The rest of the paper is organized as follows. Some preliminaries about FPBB and
SIR are given in Section 2. The proposed algorithms are represented in Section 3
and Section 4. The evaluation of the proposed algorithms via simulation is given in
Section 5, and their application to real microarray data is carried out in Section 6.
Lastly, concluding remarks are given in Section 7.

2. Preliminaries

2.1. Finite population Bayesian bootstrapping for HDDC. The FPBB tech-
nique is a subset of the Bayesian approach for a finite population which is based on
finding the conditional distribution of unobserved data given the observed data. This
posterior distribution is called Polya posterior. Simulating data from Polya posterior
is based on Polya’s urn scheme [20] and generated data are called Polya sample. We
use the ployapost package [21] to generate a Polya sample.

Suppose in our data n < p. We use FPBB for generating Polya sample of size m
from available data such that n +m becomes greater than p. Consequently, we can
use traditional classifiers such as logistic regression for classifying original data, based
on obtained synthetic data.
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2.2. Sliced inverse regression. As mentioned previously, since p is large, we may
encounter non-convergence in estimating the logistic regression parameters. There-
fore, dimension reduction methods such as SDR is a optimal way for eliminating this
divergence. The most well-known algorithm of SDR is SIR. The basic concept of
SIR is to replace the covariate vector X with a its linear combination without loss of
information on the conditional distribution y|X. SDR is based on a population meta-
parameter, i.e., Central Subspace (CS; [5]). SIR uses the eigenvector of cov(E(Z|Y ))
to find the bases of CS, where Z is standardized of X. Since response variable y is
binary, one basis is often significant for CS. We use the dr package [23] to perform
dimension reduction and to compute the CS bases.

3. Finite population Bayesian bootstrapping majority voting logistic
regression classifier

In the logistic regression classifier, a decision is based on the odds ratio which is
defined as

log
Pr(y = 1|x)
Pr(y = 0|x)

= β0 + βT
1 x,

where y ∈ {0, 1} and x are the response and observation vector of covariates, re-

spectively. If we suppose µ(x,β) =
exp{β0+βT

1 x}
1+exp{β0+βT

1 x} , where β = (β0,β
T
1 )

T and

β1 = (β1, . . . , βp)
T are regression coefficients, then y has Bernoulli distribution with

parameter µ(x,β). Based on a sample of size n from this distribution, the logarithm
of the likelihood function of β is as follows:

l(β) =

n∑
i=1

{
yi log(µ(xi,β)) + (1− yi) log(1− µ(xi,β))

}
. (3.1)

The maximum likelihood estimator of β is obtained by iteratively reweighted least
squares method. After some calculations, the following recursive equation [7], is
obtained.

β(k+1) = β(k) + (W TDW )−1W T (y − µ(W ,β(k))),

where D = diag
(
µ(x1,β

(k))(1− µ(x1,β
(k))), . . . , µ(xn,β

(k))(1− µ(xn,β
(k)))

)
, y =

(y1, . . . , yn)
T , µ(W ,β(k)) =

(
µ(x1,β

(k)), . . . , µ(xn,β
(k))

)T

, W is n×p design matrix

and β(k) indicates the vector of initial approximation for each βj , j = 0, . . . , p, in kth
iteration. In high-dimensional case and when n < p, W TDW is not full rank,
so its inverse does not exist. Therefore, the estimation of regression coefficients is
impossible.

Zarei et al. [28] introduced FPBBLRC for estimating β in the two-class supervised
classification in high-dimensional, low sample setting. As mentioned before, their
algorithm is based on adding mean of the simulated data to the observed data and
using SIR. Here, we change some steps of this algorithm and will show that the new
algorithm is more efficient than FPBBLRC. Our algorithm is as follows:
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(1) Divide the data with respect to the labels of response variable into two classes.
The first class contains sample values that the response variable has label 0
and the second class includes remainder values, with label 1.

(2) For each covariate in each class and with respect to the proportion of the
number of zeros and ones of the response variable, we generate the Polya
samples of size m1 and m2 from the available sample in each splited group,
such that m+ n > p, where m = m1 +m2.

(3) Attach labels 0 and 1 to the generated data of classes 1 and 2 as new response
values, respectively.

(4) Use SIR to compute a basis of CS based on the synthetic data.
(5) Use TLRC for estimating model parameters based on the product of CS base

into the training data.
(6) Use the estimated β and the product of CS base into test data for predicting

the classes of test data.

We do above steps B times. Now, to apply the ensemble model to the test data,
outputs of the B trails are used and by the majority voting rule, classes of the test data
are determined. We call this new algorithm Finite Population Bayesian Bootstrapping
Majority Voting Logistic Regression Classifier (FPBBMVLRC). We drew graph of
average accuracy against B, in different situations, which shows that choice B = 25
is enough to get the maximum accuracy for FPBBMVLRC.

4. Pseudo-random forest logistic regression classifier

The Pseudo-Random Forest Logistic Regression Classifier (PRFLRC) algorithm is
similar to the random subspace method [13] that is an ELSV method. The random
subspace algorithm chooses variables by simple random sampling with replacement.
This algorithm is not useful when we use TLRC, due to greater probability of collinear-
ity. The PRFLRC algorithm is as follows:

(1) Choose d variables such that d < n and D times.
(2) Use TLRC on the selected variables and predict the labels of test data in each

time.

Now, the final classes of test data are determined by majority voting rule from the
predicted labels that have been predicted during these D times. We select d such
that 1.5d = n, this value is enough to calculate logistic regression parameters with
good precision. Furthermore, for determining D, we offer the rule D = p/2. This rule
cause that the average number of selecting any variable become greater than one. For
example if n = 15 and p = 1000, then d = 10 and D = 500. Therefore, we estimate
parameters related to 5000 variables, i.e., the expected value of selecting each variable
is 5.

5. Evaluation of FPBBMVLRC and PRFLRC

Our approach for evaluating FPBBMVLRC and PRFLRC is similar to [28]. We com-
pare them with FPBBLRC, the penalized logistic regression classifiers: Ridge [14],
LASSO [24] and Elastic Net (EN; [27]) and also with NB and KNN classifiers in the
real data analysis. We use these methods to classify simulated and real data and
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compare their classification accuracy. The algorithm with the highest average clas-
sification accuracy is better. Furthermore, for the real microarray data, we compare
sensitivity and specificity [19]. In addition, the Hoslem test of goodness of fit for
logistic regression models [15] has been used for evaluation of using TLRC on the
synthetic data.

We apply the glmnet package, which is based on coordinate descent algorithm
[9, 10], for estimating tuning parameters and using the regularized logistic regression.
Furthermore, for making the balance between LASSO and Ridge methods, we use the
mixture parameters of EN equal to 0.5. The e1071 package [22] for computing KNN
and NB is used.

5.1. Simulation analysis. In this subsection to consider the performance of FPBB-
MVLRC and PRFLRC in a simulation study, we generate high-dimensional and low
sample size data, with equal correlation matrix from a standard multivariate normal
distribution. The linearity condition is the most important condition for SIR which
is met by the normal distribution [6].

The correlation between covariates is assumed 0.1, 0.5 and 0.9. Data are generated
from the logistic regression model

log(
yi

1− yi
) = β0 +

p∑
j=1

xijβj + ϵi, i = 1, . . . , n. (5.1)

The logistic regression coefficients βj for j = 0, . . . , p are generated from uniform
distribution U(−2, 4), xij is ith observation from jth covariate, and ϵis are the inde-
pendent error terms generated from N(0, 1). The simulation is performed 50 times.
In every simulation, the number of the predictor variables is 1000 and the training
sample size n takes 20, 30, and 50.

The average of classification accuracy, obtained for the test data, for different
training sample sizes, correlations and methods are shown in Table 1. Generally
speaking, when the correlation between covariates is low (independent covariates)
and the sample size is small, PRFLRC and FPBBMVLRC have better performance
compared to other classifiers, respectively. When the correlation between covariates
increases, the average accuracy increases too. For instance, when ρ = 0.1 and n = 20,
the average accuracy of FPBBMVLRC is about 86.3% that increases to 94.6% for
ρ = 0.9. Since with respect to the simulation model (5.1), as correlation increases the
association between the response variable and the linear combination of covariates
increases as well.

Furthermore, increasing the sample size n improves the efficiency of all algorithms,
for example, when the train sample size is 20 and ρ = 0.1, the average of accuracy
of FPBBMVLRC is about 86.3% and increases to 88.4% for the train sample size of
50 with the same correlation. Since the FPBBLRC algorithm uses the mean values
of generated data by the FPBB method, this algorithm is more affected by generated
outlier data and collinearity between variables. That’s why FPBBMVLRC is more
precise than FPBBLRC.
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Table 1. Comparison of the proposed algorithms with other classi-
fiers based on the average percent of classification accuracy obtained
for the simulated test data in 50 runs. The best values are high-
lighted.

Correlation Training sample size
Method ρ n = 20 n = 30 n = 50

0.1 86.3 88.3 88.4
FPBBMVLRC 0.5 92.2 93.7 93.6

0.9 94.6 92.8 96.3

0.1 87.8 93 95.1
PRFLRC 0.5 89.8 94.6 94.3

0.9 91.8 94.6 94.8

0.1 83.9 86.4 86.5
FPBBLRC 0.5 91.1 91.3 91.9

0.9 92.3 92.8 92.4

0.1 80.3 86.8 88.1
Ridge 0.5 90.5 93.4 95.6

0.9 92.7 96.3 97.8

0.1 64.1 70.1 76.3
LASSO 0.5 80.6 84.6 90.6

0.9 90.3 93.4 95.5

0.1 73.2 78.0 82.2
EN 0.5 87.7 90.2 93.6

0.9 91.6 95.7 97.5

6. Real data analysis: classification of microarray gene expression
data

In this section, two famous gene expression datasets: Colon and Leukemia are used to
compare classifier algorithms. The Colon microarray data set [1] includes 2000 genes
and 62 samples, and tissue type is the response variable, which consists of 22 normal
tissues and 40 cancerous tissue. Leukemia microarray data set [11] originally contains
7,129 genes. However, we use corrected data set based on the protocol defined by [8]
and are obtained by [18]. This new data set contains 3,571 genes and 72 sicks that
categorized 47 patients with Acute Lymphoblastic Leukemia (ALL) and 25 patients
with Acute Myeloid Leukemia (AML) which are levels of the response variable.

To evaluate the performance of the proposed algorithms, datasets are randomly
splitted into two parts 70% for training and 30% for testing. Each procedure is
repeated 30 times and the averaged accuracy of predicted labels, sensitivity, specificity
and standard deviation (SD) of each index, are presented in Tables 2 and 3. Similar
to [18], we select the train/test sample size of Colon and Leukemia data 42/20 and
50/22 respectively, and K equal to 3 and 5. In these tables the suffix BC indicates
the use of Box-Cox transformation to make data normal.

Table 2 shows that for Colon data set, FPBBMVLRC gives the average predicted
accuracy of 83.0%, which is the highest value of accuracy. LASSO and KNN(K = 5)
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Table 2. Percent of accuracy (SD in parentheses) of classification
algorithms for Colon gene expression data set. The best values are
highlighted.

Algorithm Predictive accuracy Sensitivity Specificity

FPBBMVLRC 83.0 (0.06) 88.8 (0.04) 71.4 (0.12)
PRFLRC 66.9 (0.08) 85.3 (0.08) 32.3 (0.15)
FPBBLRC 81.1 (0.07) 87.1 (0.11) 70.1 (0.06)
FPBBLRC-BC 81.5 (0.05) 83.5 (0.08) 80.1 (0.10)
LASSO 78.7 (0.08) 90.7 (0.11) 59.6 (0.25)
Ridge 79.5 (0.08) 88.2 (0.09) 65.3 (0.21)
EN 80.1 (0.08) 89.6 (0.05) 66.3 (0.26)
NB 61.0 (0.12) 78.0 (0.13) 45.9 (0.15)
KNN(K = 3) 80.6 (0.08) 80.0 (0.12) 81.7 (0.14)
KNN(K = 5) 79.3 (0.09) 77.8 (0.12) 86.5 (0.12)

Table 3. Percent of accuracy (SD in parentheses) of classification
algorithms for Leukemia gene expression data set. The best values
are highlighted.

Algorithm Predictive accuracy Sensitivity Specificity

FPBBMVLRC 98.2 (0.02) 99.8 (0.01) 97.4 (0.03)
PRFLRC 74.1 (0.11) 47.3 (0.15) 90.1 (0.07)
FPBBLRC 96.4 (0.04) 93.3 (0.07) 98.3 (0.03)
FPBBLRC-BC 95.2 (0.05) 92.5 (0.10) 96.9 (0.04)
LASSO 92.3 (0.06) 82.8 (0.16) 98.2 (0.03)
Ridge 96.3 (0.03) 91.2 (0.10) 98.3 (0.03)
EN 95.1 (0.05) 88.9 (0.13) 99.2 (0.01)
NB 94.6 (0.04) 91.7 (0.12) 97.3 (0.05)
KNN(K = 3) 96.3 (0.05) 92.1 (0.10) 98.7 (0.03)
KNN(K = 5) 94.0 (0.02) 96.4 (0.07) 92.9 (0.03)

have the highest values of sensitivity and specificity, respectively. Furthermore, the
low amount of SD shows that the suggested method is robust too. As noted by [28]
since the response variable has two levels, one base for each data set is significant, at
the result; FPBBMVLRC uses only one variable to get such accuracy. Concerning
Table 3, for Leukemia data set FPBBMVLRC gives the average predictive accuracy
and sensitivity are 98.2% and 99.8%, respectively. These amounts have the maximum
of accuracy and sensitivity among all classifiers. In addition, sensitivity and specificity
are more balanced in our algorithm as compared to other algorithms.

In real data analysis, PRFLRC does not work well. The reason is that the variables
in these data have not identical distributions, and the correlation between them is
not the same. Therefore, for each subset of selected variables, the predicted labels are
very different with each other. Therefore, we can say that the PRFLRC algorithm is
the best choice for HDDC when variables have exchangeable distributions.
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7. Conclusion

In this paper, we increased the efficiency of FPBBLRC and introduced a new and
efficient algorithm for the classification of high-dimensional exchangeable data named
as PRFLRC. These algorithms are based on utilizing TLRC on the reduced-dimension
data by two dimensionality reduction methods, i.e., SDR and selection variable by
simple random sampling without replacement.

Simulation study and analysis of real microarray data show that the PRFLRC
algorithm has high accuracy in HDDC for data with exchangeable distributions. In
general, FPBBMVLRC is a better selection for HDDC rather than the PRFLRC
and other competitive classifiers, particularly when the sample size is too small. The
proposed algorithms are simple, applicable for extremely correlated data and also un-
balanced data. Furthermore, we can use another classifiers rather than TLRC with
both algorithms. Also, in practical issues the use of synthetic data saves time and
money, especially when performing a large number of experiments are expensive or
impossible. The reason of why the combined data improve performance HDDC by
TLRC, is not fairly straightforward. However, we can say that adding generated data
to available data, decreases the sampling error for each variable and consequently in
whole data.
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