
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 7, No. 4 (Special Issue), 2019, pp. 580-588

Using Legendre spectral element method with Quasi-linearization
method for solving Bratu’s problem

Mahmoud Lotfi∗

Department of Applied Mathematics,
University of Kurdistan, Sanandaj, Iran.
E-mail: m.lotfi@sci.uok.ac.ir and lotfi.mahmud@gmail.com

Amjad Alipanah
Department of Applied Mathematics,
University of Kurdistan, Sanandaj, Iran.
E-mail: A.Alipanah@uok.ac.ir

Abstract This work presented here is the solution of the one-dimensional Bratus problem. The
nonlinear Bratus problem is first linearised using the quasi-linearization method and

then solved by the spectral element method. We use the Legendre polynomials for

interpolation. Finally we show the results with a numerical example.
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1. Introduction

1.1. problem definition. The Bratu’s problem which was set by Bratu [8], in 1914
comes in different forms. The most generalized Bratu’s problem is the so-called
Liouville-Bratu-Gelfand equation [18, 28] which has the form

∇2u (x) = −λeu(x), x ∈ Ω ⊂ Rn,

u = 0, x ∈ ∂Ω,

where the constant λ > 0 is a physical parameter and ∂Ω is the boundary of Ω. In
this paper, we restrict ourselves to the Bratu’s problem in the one-dimension given
by

u′′ (x) = −λeu(x), 0 ≤ x ≤ 1,

u (0) = u (1) = 0.
(1.1)

From literature [23, 2], the analytical solution of equation (1.1) is given by
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where ω is the solution of the equation ω =
√

2λ cosh
(
ω
4

)
. The Bratu’s problem has

zero, one or two solutions when λ > λc, λ = λc and λ < λc, respectively, where the
critical value λc satisfies the equation l = l

4

√
2λc sinh

(
l
4ω
)
. According to Boyd [7],

λc = 3.513830719.
The Bratu’s problem is worth investigating due to its several applications in both
science and engineering. Some of the applications of the two-point boundary value
problem for Bratus equation include the Chandrasekhar model of the expansion of
the universe [20]. The Bratu’s problem arises in the electrospinning process for the
production of ultra-fine polymer fibers [15]. Apart from these physical applications,
the Bratu’s problem has been used as a benchmark for non-linear solvers. In par-
ticular, Motsa and Sibanda [27] tested and proved the accuracy and validity of the
modified quasi-linearization method using the Bratu’s problem. A lot of work has
been done by researchers to find the numerical solution of the Bratu’s problem in one
dimension. Ben-Romdhane and Temimi [6] proposed a new iterative finite difference
scheme based on the Newton-Raphson-Kantrovich approximation method to solve
the classical Bratu’s problem. Mohsen [23] used the non-standard finite difference
method to treat the one-dimensional Bratu’s problem. Other numerical techniques
which were used to solve the Bratu’s problem include the shooting method [1], fi-
nite element method [9], homotopy analysis method [13] and the Laplace Adomian
decomposition method [16].

1.2. A summary of the spectral element method. A spectral element method
(SEM) combine the advantages and disadvantages of Galerkin spectral methods with
those of finite element methods by a simple application of the spectral method per
element. One of the advantages of this method is the high accuracy and stable solving
algorithm with a small number of elements under a wide range of conditions [29].
Finite element method (FEM) was proposed for the first time in 1943 by Richard
Courant [12]. He solve the Poisson equation based on minimizing piecewise linear
approximations on finite subdomains.
Spectral method is a conventional method for solving partial differential equations,
which was first introduced by the Navier for elastic sheet problems in 1825. In spec-
tral method approximate the solution on the one general domain.
In 1984, Patera with the division of domains, applied a spectral method to a greater
number of subdomains. He proposed the spectral element method by combining
the spectral method and the FEM [24]. Patera in his innovative method, use the
Chebyshev polynomials as the interpolation basis function. Legendre spectral ele-
ment method (LSEM) were developed by Maday and Patera [22]. The use of the La-
grangian interpolation conjugate with the Gauss-Legendre-Lobatto quadrature leads
to a matrix of mass with a diameter structure [4]. The diagonal mass matrix is a very
important property of the LSEM and is different from the Chebyshev spectral element
method [26]. Chen et al., in [10], used the LSEM to solve the constrained optimal con-
trol problem. An alternating direction implicit (ADI) LSEM for the two-dimensional
Schrodinger equation is developed in [34], and the optimal H1 error estimate for
the linear case is given. The aim of [14] is the Lagrange-Galerkin SEM for solving
the two-dimensional shallow water equations. Authors of [33] have considered the
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numerical approximation of the acoustic wave equation by the SEM based on Gauss-
Lobatto-Legendre quadrature formulas, and finite difference Newmark’s explicit time
advancing schemes. A modified set of basis functions for use with SEMs is presented
in [30] for solving a mixed elliptic boundary value problem. These basis functions
are constructed so that the axial conditions along a plane or axis of symmetry are
satisfied identically. A numerical SEM for the computation of fluid flows governed
by the incompressible Euler equations in a complex geometry is presented in [32].
Zhuang and Chen used this method to solve the biharmonic equations [35]. In [19],
authors used the SEM with least-square formulation for parabolic interface problems.
Ai et al., used fully diagonalized LSEMs using Sobolev orthogonal/biorthogonal basis
functions for solving second order elliptic boundary value problems [3]. A Legendre
spectral element formulation of an improved time-splitting method is developed for
the natural convection heat transfer problem in a square cavity by Wang and Qin [31].
Lotfi and Alipanah in [21], study the LSEM for solving the sine-Gordon equation in
one dimension. The stability and convergence analysis of the method is also done.

1.3. The main aim of this article. The main contribution of this article is to
introduce an efficient numerical method for Bratu’s problem in one dimension. First
linearised the nonlinear Bratu’s problem by using the quasi-linearization method and
then solved by the LSEM. In section 2, we first obtain linear form of the Eq. (1.1)
using the quasi-linearization method. In section 3, the Legendre polynomials and
the associated SEM are given, and discrete form of the problem is obtained using
the Legendre SEM and its matrices form is calculated. In Section 4, we show the
efficiency of the method by solving a numerical example.

2. Quasi-linearization method

Our main method is a combination of two numerical methods, quasi-linearization
method (QLM) and the LSEM. The QLM which is Newton-Raphson based, was
originally proposed by [5]. It is used to linearize the non-linear differential equation
into an iterative sequence of linear differential equations. The resulting system of
equations is solved using the LSEM.
Let us consider an nth order nonlinear differential equation of the form

F [u (x)] = 0, x ∈ [a, b] , (2.1)

where x is an independent variable and u (x) =
(
u, u′, ..., u(n)

)
is a vector of solutions

of (2.1). As in [11] it is assumed that z =
(
z, z′, ..., z(n)

)
is an approximate solution of

(2.1) which is sufficiently close to the true solution u. Assuming that all the partial
derivatives of F exists, applying Taylors theorem we get

F [u] = F (z) +∇F (z) . (u− z) + (higher order terms) . (2.2)

Upon ignoring higher order terms equation (2.2) becomes

∇F (z) .u = ∇F (z) .z − F (z) (2.3)

The solution from (2.3) will not be, generally, the exact solution of (2.1) because of
the discarded higher order terms. We will use the initial approximate solution z as
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a calculated solution to iteratively compute the new solution u. With this in mind,
denote z and u by us and us+1 respectively to get the iterative formula

∇F (us) .us+1 = ∇F (us) .us − F (us) (2.4)

where s = 0, 1, 2, .....

3. LSEM

3.1. Legendre polynomials. The Nth-degree Legendre polynomial LN (θ), is a so-
lution of the second-order differential equation((

θ2 − 1
)
L′N (θ)

)′ −N (N + 1)LN (θ) = 0

In the normalized form of LN (θ) we have LN (1) = 1, which can be calculated as
follows

LN (θ) = 2−N
[N

2 ]∑
i=0

(−1)
i

(
N
i

)(
2N − 2i
N

)
θN−2i

where [x] denotes the integer part of x. For each pair of Legendre polynomial of
degrees N and M , the following orthogonality property applies

1∫
−1

LN (θ)LM (θ) dθ =
2

2N + 1
δNM ,

where δNM is Kroneckers delta. The Nth-degree Lobatto polynomial, LON , derives
from the (N + 1)-degree Legendre polynomial, LN+1, as

LON (θ) = L′N+1 (θ) .

Legendre and Lobatto polynomials can be calculated using the recursive relations [25]

LN+1 (θ) = 2N+1
N+1 θLN (θ)− N

N+1LN−1 (θ) ,

LON−1 (θ) = N(N+1)
2N+1

(LN−1(θ)−LN+1(θ))
1−θ2 .

3.2. LSEM. In the LSEM, we first divide the domain Ω into Ne non-overlapping
subdomains Ωe,

Ω̄ =

Ne⋃
e=1

Ω̄e,

Ne⋂
e=1

Ωe = φ.

Basis functions are considered as the Lagrangian interpolation polynomials defined
at Gauss-Lobatto integration points on each element. If Ne = 1 we obtain a spectral
Galerkin method of order N − 1. If N = 1 or N = 2 a standard Galerkin FEM is
obtained based on linear and quadratic elements respectively. Convergence is either
obtained by increasing the degree of the polynomials or by increasing the number of
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elements Ne.
Now on each element Ωe we define the approximate solution of order N as

ue (x) =

N∑
j=0

uejϕj (x), 1 ≤ e ≤ Ne, (3.1)

where ϕj is the jth Lagrange polynomial of order N on the Gauss-Legendre-Lobatto

points {θi}Ni=0 [17]

ϕj (θ) =
1

N (N + 1)LN (θj)

(
θ2 − 1

)
LON−1 (θ)

θ − θj
, 0 ≤ j ≤ N, −1 ≤ θ ≤ 1.

To convert the [−1, 1] to eth element and its inverse, we use the following mapping
functions

x (θ) =
(xe − xe−1) θ

2
+
xe + xe−1

2
, −1 ≤ θ ≤ 1,

θ (x) =
2x− (xe + xe−1)

xe − xe−1
, xe−1 ≤ x ≤ xe,

where xe and xe−1 are the endpoints of eth element. The stiffness and mass matrices
on each element are calculated as follows

Seij =

∫ xe

xe−1

ϕ′i (x)ϕ′j (x) dx =
2

he

∫ 1

−1

ϕ′i (θ)ϕ′j (ξ) dθ,

Me
ij =

∫ xe

xe−1

ϕi (x)ϕj (x) dx =
he
2

∫ 1

−1

ϕi (θ)ϕj (θ) dθ,

where

he = xe − xe−1.

By using the Gauss quadrature we obtain [25]

Seij =
2

he

N∑
k=0

dikdjkwk,

Me
ij =

he
2
δijwi,

where

wk =
2

N (N + 1) [LN (tk)]
2 , 0 ≤ k ≤ N,

and

dik =
LN (θk)

LN (θi)

1

θk − θi
, i 6= k,

dii =
LON−1 (θi)

2LN (θi)
.
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3.3. Application to the Bratu’s problem. The Bratu’s problem (1.1) can be
transformed to a linear differential problem using the QLM. Equation (1.1) is of
second order, thus we have

F (u, u′, u′′) = u′′ (x) + λeu(x).

Substituting into (2.4) we get the iterative scheme

u′′s+1 (x) + λeus(x)us+1 (x) = λeus(x) (us (x)− 1) ,

us+1 (0) = us+1 (1) = 0,
(3.2)

where s = 0, 1, 2, .... Equation (3.2) can be used to compute us+1 (x) provided us (x)
is known. In particular, the initial approximation u0 (x) must be specified so that we
compute u1 (x) . Once u1 (x) is known, we compute u2 (x) using equation (3.2) and
so on. Also, u0 (x) must satisfy boundary conditions.
The weak form of the Equation (3.2) is obtained as follows
For each element Ωe, find ue ∈ Uh, such that

−
∫

Ωe
ues+1,xvxdx+ λ

∫
Ωe
eus

e

us+1vdx

= λ
∫

Ωe
eus

e

(us − 1) vdx, ∀v ∈ Uh,≤ e ≤ Ne.

The first integral on the left hand side, is obtained by integration by parts. Now, if
we consider the test function v to be the kth Lagrange’s function of order N and use
the equation (3.1), we have

−
N∑
j=0

uej,s+1

(∫
Ωe
ϕ′jϕ

′
kdx

)
+ λ

N∑
j=0

uej,s+1

(
eu

e
j,s
∫

Ωe
ϕjϕkdx

)

= λ
N∑
j=0

eu
e
j,s
(
uej,s − 1

) (∫
Ωe
ϕjϕkdx

)
.

(3.3)

The right hand side of equation (3.3) is obtained using the following equation

eu
e

(ue − 1) ∼=
N∑
j=0

eu
e
j
(
uej − 1

)
ϕj .

The matrix form of the semi-discrete form equation (3.3) will be as follows

−SeUes+1 + λMeeU
e
sUes+1 = λMeeU

e
s (Ues − Ee) , (3.4)

Where Ee = [1, 1, ..., 1]
T

. The vector Ue contains the approximate solution of the
order N on the element Ωe, M

e is a local diagonal mass matrix and Se is a local
stiffness matrix on the element Ωe.
In order to obtain a discrete form on the general domain, we must assemble the local
matrices Me and Se and obtain the general matrices M and S [25]. So the equation
(3.4) will be as follows

−SUs+1 + λMeUsUs+1 = λMeUs (Us − E) , (3.5)

in which U is the vector of the approximate solution on the general domain Ω.
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4. Numerical results

In this section, we consider the numerical example to validate the proposed scheme.The
accuracy of the scheme is verified by L2 and L∞ norms calculating and root mean
square errors.
We set

L∞err ≡ ‖u− U‖∞,

RMSerr = L2err
Ne,N+1 ,

ue (x) =
N∑
j=0

uejϕj (x), 1 ≤ e ≤ Ne,

Where Ne,N is the all nodes of the domain and Un is the vector of nodal values of
the numerical solution corresponding to the discretization parameters N , Ne and k
at time tn, and, for each continuous function f

‖f‖2 =

√
Ne,N∑
r=1

f2 (xr),

‖f‖∞ = max
1≤r≤Ne,N

|f (xr)| .

The linear system (3.2) is solved using the proposed scheme for λ = 1, 2. We solve
this problem with several values of N and Ne. Table 1 shows the errors of proposed
scheme with several values of N and Ne = 20. Figure 1 show graph of exact solution
and approximate solution with N = 4 and Ne = 20.

Table 1. Numerical results for Bratu’s problem with Ne = 20.

λ = 2 λ = 1
N L2err L∞err RMSerr L2err L∞err RMSerr
1 1.3053e-02 1.6500e-02 1.1023e-03 2.1529e-02 2.2097e-02 1.1028e-03
2 1.0018e-02 7.9776e-03 3.0531e-04 1.3130e-02 8.3774e-03 3.2024e-04
3 2.2023e-03 9.9553e-04 3.6104e-05 2.4071e-03 1.0268e-03 3.9460e-05
4 3.9778e-04 1.9421e-04 4.9109e-06 6.4771e-04 3.4862e-04 7.9964e-06
5 2.5862e-04 1.3858e-04 3.5507e-06 1.0154e-04 5.3085e-05 1.0053e-06
6 1.5050e-04 1.0004e-04 2.8967e-06 3.5765e-05 1.5567e-05 2.9558e-07
7 3.7733e-05 4.2734e-05 1.0061e-06 3.5359e-06 1.0017e-05 1.5078e-07

5. Conclusion

The spectral methodss are useful tools for solving ordinary and partial differential
equations. Also, the incorporation of the finite element method with the spectral
polynomials i.e. the use of the spectral polynomials as a new shape function in the
finite element method is very efficient for obtaining a numerical algorithm with high
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Figure 1. Exact and numerical results for Bratu’s problem with
N = 4, Ne = 20 and λ = 1.
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accuracy. In this article, we constructed a LSEM for the solution of the Bratu’s
problem. We used the LSEM for discretizing the spatial space. Also we used a quasi-
linearization method for linearised the problem. Finally, using the test problems, we
demonstrated that the algorithm is efficient for obtaining approximation solutions of
Bratu’s problem.

References

[1] S. Abbasbandy, M. S. Hashemi and C. S. Liu, The Lie-Group shooting method for solving the
Bratu’s equation, Commun. Nonlinear Sci. Numer. Simul., 16, (2011), 4238–4249.

[2] S. O. Adesanya, S. A. Arekete and E. S. Babadipe, A new result on Adomian decomposition
method for solving Bratus problem,Math. Theory Model, 3(1), 92013), 116–120.

[3] Q. Ai, H. Y. Li and Z. Q. Wang, Diagonalized Legendre spectral methods using Sobolev orthog-

onal polynomials for elliptic boundary value problems, Appl. Numer. Math., (2018).
[4] K. J. Bathe, Finite Element Procedures, second ed., Prentice-Hall, Englewood Cliffs, NJ, (1995).

[5] R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundaryvalue Problems,

Elsevier, New York, (1965).
[6] M. Ben Romdhane and H. Temimi, An iterative finite difference method for solving Bratu’s

problem, J. Comput. Appl. Math., 292, (2016), 76–82.

[7] J. P. Boyd, An analytical and numerical study of the two-dimensional Bratu’s equation, J. Sci.
Comput., 1(12), (1986), 183–206.

[8] G. Bratu, Sur les equation integrals non-lineaires, Bull. Math. Soc. France., 42, (1914), 113–142.

[9] R. Buckmire, Investigations of nonstandard, Mickens-type, finite-difference schemes for sin-
gular boundary value problems in cylindrical or spherical coordinate, Numer. Methods Partial

Differential Equations, 19, (2003), 380–398.

[10] Y. Chen, N. Yi and W. Liu, A Legendre–galerkin spectral method for optimal control problems-
governed by elliptic equations, Siam J. Numer. Anal., 46, (2008), 2254–2275.

[11] C. Chun, Iterative methods improving Newtons method by the decomposition method, Computers
and Mathematics with Application, 50, (2011), 1559–1568.



588 M. LOTFI AND A. ALIPANAH

[12] R. Courant, Variational method for the solution of problems of equilibrium and vibration, Bull.

Am. Math. Soc., 49, (1943), 1–23.

[13] M. A. El Tawil and H. N. Hassan, An efficient analytic approach for solving two point nonlinear
boundary value problems by homotopy analysis method, Math. Methods Appl. Sci., 34, (2006),

977–989.

[14] F. X. Giraldo, Strong and weak Lagrange-Galerkin spectral element methods for the shallow
water equations, Comput. Math. Appl, 45, (2003), 97–121.

[15] Q. Guo, N. Pan and Y. Q. Wan, Thermo-electro-hydrodynamic model for electrospinning pro-

cess, Int. J. Nonlinear Sci. Numer. Simul., 5, (2004), 5–8.
[16] A. Hamdan and M. I. Syam, An efficient method for solving Bratu’s equations, Appl. Math.

Comput., 176, (2011), 704–713.

[17] J. S. Hesthaven, S. Gottlieb and D. Gottlieb, Spectral Method for Time-Dependent Problems,
Cambridge University Press, (2007).

[18] J. Jacobsen and K. Schmitt, The Liouville-Bratu-Gelfand problem for radial operators, J. Dif-
ferential Equations, 174(1), (2002), 283–298.

[19] . A. Khan, C. S. Upadhyay and M. Gerritsma, Spectral element method for parabolic interface

problems, Comput. Methods Appl. Mech. Engrg, (2018).
[20] S. Liao and T. Tan, A general approach to obtain series solutions of nonlinear differential

equations, Stud. Appl. Math., 119, (2007), 297–354.

[21] M. Lotfi and A. Alipanah, Legendre spectral element method for solving sine-Gordon equation,
Advances in Difference Equations, 119, (2019). DOI 10.1186/s13662-019-2059-7.

[22] Y. Maday and A. T. Patera, Spectral Element Methods for the Incompressible Navier-Stokes

Equations, Surveys on Computational Mechanics, ASME, New York (1989).
[23] A. Mohsen, A simple solution of the Bratu’s problem, Comput. Math. Appl, 67(1), (2014),

26–33.

[24] A. T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expan-
sion, J. Comput. Phys., 54, (1984), 468–488.

[25] C. Pozrikidis, Introduction to Finite and Spectral Element Methods Using Matlab, Chapman

and Hall/CRC, (2005).
[26] E. Priolo and G. A. Seriani, A numerical investigation of Chebyshev spectral element method

for acoustic wave propagation, Proceedings of the 13th IMACS Conference Comparat., (1991),
154–172.

[27] S. Sandile, M. Motsa and S. Precious, Some modifications of the quasilinearization method

with higher-order convergence for solving nonlinear BVPs, Numer. Algorithms, 63(3), (2013),
399–417.

[28] A. Serghini Mounim and B. M. De Dormale, From the fitting techniques to accurate schemes

for the Liouville-Bratu-Gelfand problem, Numer. Methods Partial Differential Equations, 22(4),
(2006, 761–775.

[29] F. N. Van de Vosse and P. D. Minev, Spectral Element Methods: Theory and Aplications, EUT

Report 96-w-001, Eindhoven University of Technology, (1996).
[30] R. G. Vano and T. N. Phillips, The choice of spectral element basis functions in domains with

an axis of symmetry, J. Comput. Appl. Math, 201, (2007), 217–229.

[31] Y. Wang, G. Qin and Z. Q. Wang, An improved time-splitting method for simulating natural
convection heat transfer in a square cavity by Legendre spectral element approximation, Com-

puters and Fluids, (2018).
[32] C. Xu and Y. Maday, A spectral element method for the time-dependent two-dimensional Euler

equations: applications to flow simulations, J. Comput. Appl. Math, 91, (1998), 63–85.
[33] E. Zampieri and L. F. Pavarino, Approximation of acoustic waves by explicit Newmark’s schemes

and spectral element methods, J. Comput. Appl. Math., 185, (2006), 308–2006.

[34] F. Zeng, H. Ma and T. Zhao, Alternating direction implicit Legendre spectral element method

for Schrodinger equations, Journal of Shanghai University (Natural Science Edition), 6, (2011).
[35] Q. Zhuang and L. Chen, Legendre–Galerkin spectral-element method for the biharmonic equa-

tions and its applications, Computers and Mathematics with Applications, 74 (2017), 2958–
2968.


	1. Introduction
	1.1. problem definition.
	1.2. A summary of the spectral element method
	1.3. The main aim of this article

	2. Quasi-linearization method
	3. LSEM
	3.1. Legendre polynomials
	3.2. LSEM
	3.3. Application to the Bratu's problem

	4. Numerical results
	5. Conclusion
	References

