
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 7, No. 4 (Special Issue), 2019, pp. 521-534

A priority-based service placement policy for Fog-Cloud computing
systems

Sadoon Azizi∗

Department of Computer Engineering and IT,
University of Kurdistan, Sanandaj, Iran.
E-mail: s.azizi@uok.ac.ir

Fariba Khosroabadi
Department of Computer Engineering and IT,
University of Qom, Qom, Iran.
E-mail: f.khosroabadi@stu.qom.ac.ir

Mohammad Shojafar
Department of Computer Science,
Ryerson University, Toronto, Canada.
E-mail: mohammad.shojafar@ryerson.ca

Abstract Recent advances in the context of Internet of Things (IoT) have led to the emergence

of many useful IoT applications with different Quality of Service (QoS) require-

ments. The fog-cloud computing systems offer a promising environment to provision
resources for IoT application services. However, providing an efficient solution to

service placement problem in such systems is a critical challenge. To address this

challenge, in this paper, we propose a QoS-aware service placement policy for fog-
cloud computing systems that places the most delay-sensitive application services as

closer to the clients as possible. We validate our proposed algorithm in the iFogSim
simulator. Results demonstrate that our algorithm achieves significant improvement

in terms of service latency and execution cost compared to simulators built-in poli-

cies.

Keywords. Internet of Things (IoT), Fog-Cloud computing system, Quality-of-Service (QoS), Service

placement, iFogSim.

2010 Mathematics Subject Classification. 68-06, 68M11, 68M14.

1. Introduction

Nowadays, the Internet of Things (IoT) is playing a significant role in humans daily
life. IoT enables many smart applications in a variety of domains, including smart
city, healthcare, smart grid, video surveillance, etc. Due to the popularity and growth
of these applications, the number of IoT devices (e.g., sensors, cameras, actuators,
and smart meters) are dramatically increasing. So it is expected that a tremendous
amount of data is generated by these devices, which may require real-time processing.
However, most IoT devices are limited in terms of computational power, storage, and

∗ Corresponding author.

521

522 S. AZIZI, F. KHOSROABADI, AND M. SHOJAFAR

battery life. Hence, more powerful devices are required for processing and storage
services.

Cloud computing infrastructure can be used to host IoT applications. The inte-
gration of cloud computing and IoT is known as Cloud of Things model (CoT) [1]. In
the CoT model, the cloud acts as a middleware between IoT applications/end-users
and IoT devices by which the development of smart services, such as smart trans-
portation systems [2] and pervasive healthcare [3], can be simplified. Nevertheless,
the geographically distributed nature of the IoT applications does not match with
the centralized nature of the cloud data centers. As IoT devices usually are very far
away from the cloud data centers, high latency in service delivery and high bandwidth
consumption is inevitable.

There are many IoT applications such as connected cars, augmented reality, remote
healthcare monitoring systems, and video streaming, which require low response time.
To meet such a requirement, it is necessary to place some computational and storage
resources closer to IoT devices (i.e., sensors and actuators/users). To this end, the
fog computing paradigm is introduced as a complement to cloud computing to fulfill
the requirements of IoT applications. This computing model is known as a fog-
cloud computing system. By having this system, the IoT applications with different
requirements can be supported. More specifically, the Quality of Service (QoS) for
latency-sensitive applications is improved.

Fog-cloud computing system is still in its infancy. Although the system comes with
many benefits to IoT applications, there exist numerous challenges and difficulties
which need more research and attention. Service placement problem is one of the key
research issues which has attracted significant attention from the research community
due to its impressive impact on the overall system performance and cost.

Motivated by these considerations, in this paper, we propose a QoS-aware algorithm
to service placement on a fog-cloud computing system. The proposed algorithm takes
into account the deadline requirement of each IoT application so that the most delay-
sensitive applications are placed on the devices as closely as possible to the service
consumer. Furthermore, to reduce the network bandwidth and the cost of execution
in the cloud, the number of assigned application services to the fog environment is
maximized. Our algorithm is implemented in iFogSim simulator [4] and compared
with the simulator’s built-in policies, edge-ward and cloud-only. Results demonstrate
that our algorithm significantly improves the QoS for delay-sensitive applications and
reduces the cost of execution.

The rest of this paper is organized as follows. In Section 2, related works are
reviewed. The system model and problem formulation are described in Section 3. The
proposed service placement algorithm is presented in Section 4. Section 5 is devoted
to performance evaluation and simulation results. Finally, Section 6 concludes the
paper.

2. Related Work

The service placement in fog-cloud computing systems is a new research area that
has recently attracted considerable attention [3, 5–13]. In this section, some of the
most relevant to our work are discussed.

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 521-534 523

Skarlat et al. [6] provided a conceptual framework for service provision in fog
computing. Their proposed framework is defined based on the concept of fog colony
which has been considered in many related works [8,11,14]. A fog colony is a microdata
center that is composed of an arbitrary number of fog cells. A fog cell is a software
module that runs on IoT devices and provides virtualized resources for other IoT
devices connected to it.

The authors in [7] have modeled the service placement problem in fog as Integer
Linear Programming (ILP) optimization. The goal of their optimization is to maxi-
mize the utilization of the fog environment while applications QoS requirements are
considered. Simulation results indicate that their model reduces processing cost and
does not violate application deadlines. But ILP optimization is an NP-hard problem
which is almost impossible to solve it on a large scale.

In [8], authors have modeled the service placement problem in the fog as an opti-
mization problem, where the goal function is to maximize resource efficiency in the
fog while satisfying each application’s deadline. To solve this problem, they have
implemented a genetic algorithm. The results of their study show that in their pro-
posed approach, the deadlines are not violated. However, GA runs a large number of
services in the cloud, which increases the cost of execution.

The work presented in [3] suggests an energy-efficient algorithm for application
tasks placement. The main thesis of the algorithm is to put each task on the fog
device, which has the least increase in energy consumption. In addition, their policy
tries to use fog devices in a balanced manner. They have used the remote patient
monitoring scenario as a case study to evaluate the performance of their proposed
algorithm. Compared to the iFogSim default policies, edge-ward and cloud-only, their
proposed policy reduces overall system power consumption. The main disadvantage
of this method is that priority is not considered for applications.

Yousefpour et al. [9] formulated application services placement on the fog nodes
in the form of Dynamic fog Service Provisioning (DFSP) problem. The authors have
presented two heuristics to solve this problem. The first of them is the Min-Viol
heuristic, which its goal is to minimize SLA violations while the second is the Min-
Cost heuristic, which aims to minimize cost. The main thesis is based on a centralized
approach that suffers from a single point of failure and decision making delay.

Recently, in [10], authors proposed a decentralized service placement approach for
the fog computing landscape based on context-aware information. Their solution uses
context information such as the location of IoT devices, network conditions, service
type, and expected QoS for each application to provide resources efficiently for IoT
applications. They used IBM CPLEX solver to solve their optimization problem.
Their experimental results confirm that the proposed approach is useful in maximiz-
ing the efficiency of fog landscapes and reducing delay. According to this fact that
their optimization model is of type Integer Linear Programming, when the number
of services and fog nodes increases, the computation time of the problem-solving in-
creases exponentially.

524 S. AZIZI, F. KHOSROABADI, AND M. SHOJAFAR

3. The system model and problem statement

In this section, we present our proposed architecture and form our problem state-
ment.

3.1. Assumed Architecture. Our assumed architecture is based on the fog com-
puting framework proposed by the authors in [6]. A view of this architecture has
been depicted in Figure 1, where three layers can be defined: IoT layer, fog layer, and
cloud layer. In this architecture, IoT devices are located on the lowest layer, which
are distributed geographically in different locations. In the fog layer, fog computing
is placed as the middle layer between IoT devices and cloud. In this layer, the fog
devices are partitioned into some subsets (or clusters), that each of them is called a
colony. Each colony contains a set of fog cells and a control node, that details of which
are given in the next sub-section. In addition, the connection between fog computing
and cloud computing is done by a proxy. In the cloud layer, the highest layer, the
cloud servers are placed that provide more powerful computing than the fog devices.

Figure 1. Assumed fog computing architecture.

Each IoT application contains collections of modules that they are also known as
services or tasks. These modules make the processing elements that are modeled
based on Distributed Data Flow (DDF) [15]. Throughout this paper, the terms of the
module, service, and task are used interchangeably. We also consider the dependencies
between the services of each application that can be modeled by a directed graph in
which the nodes stand for the application services and the edges represent the flow of
data between services. Additionally, the Sense-Process-Actuate Model is used for IoT
applications. Based on this model, first, data is collected by the sensors; next, it has
been sent to the computing nodes in the higher layer (fog and/or cloud) to process
and finally, the resultant commands are forwarded to the actuators. Such a model is
completely considered in iFogSim [4].

3.2. Problem Statement. Consider a fog colony with a control node and m fog
cells. We use the notation F for the control node and the set RF =

{
f1, f2, . . . , fm

}
for the fog cells that are inside the colony. Similar to [8], for each fog colony, we

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 521-534 525

consider a neighbor fog colony which its control node has the lowest delay with F ,
and use the notation N to identify its control node. Also, the C notation represents
cloud servers. Therefore, the total set of computational devices in the system model
can be defined by D =

{
F,RF , N,C

}
.

Each of the devices in the set D has different resources, such as CPU and RAM.
Ccpu

F and Cram
F are used to indicate the capacity of the CPU and RAM of the control

node F , respectively. Such notations can be defined for other computing devices
within the set D. We show the utilization of CPU and RAM of the control node F ,
by U cpu

F and Uram
F , respectively. Similar notations can be defined for other computing

devices within the set D, too. The latency of the communication link between a
particular fog cell f j and the control node F is identified by dj . Analogously, dN and
dC indicate the delay between the control node F with the neighbor control node and
the cloud, respectively.

Consider A = {A1, A2, . . . , An} representing IoT applications that are submitted
by the IoT devices for processing to the control node of a fog colony. Each Ai ∈ A
contains a set of services Ai = {Si,1, Si,2, . . . , Si,k}, where Si,j represents the j-th
service of the application i. Each service Si,j has different resource requirements
which in this work, we focus on its computational resources, i.e., CPU and RAM.
For each service Si,j , its CPU and RAM requirements are defined by Scpu

i,j and
Sram
i,j , respectively. Based on the assumed model, i.e. Sense-Process-Actuate Model,

each service is belonging to one of types sensing, processing or actuating. Finally,
application Ai has a specific deadline DAi that is determine by the users of the
application.

Regarding the above described model, the service placement problem in the fog-
cloud computing system can be presented as follows:

Consider a set of applications A = {A1, A2, . . . , An} in which each application
Ai has a deadline DAi and consists of the number of dependent services. On the
other hand, there is a set of computational devices in the system including D ={
F,RF , N,C

}
.The process of mapping services into computational devices is known

as the service placement problem.
The response time of application Ai is obtained by the summation of the deploy-

ment time WAi
, and the makespan MAi

, that can be calculated by the following
equation [8]:

RAi
= WAi

+ MAi
(3.1)

The deployment time of application Ai is determined by the two factors: waiting
time in the queue and the required time it takes to put all of its services on the
computational devices. When IoT applications are submitted to the control node
F for execution, they enter the application queue until the time of problem-solving
by F will come. For example, if application Ai arrives at time tx while the time
of problem-solving is ty, in this case, the application should wait for the duration
ty − tx in the queue. This time is known as the waiting time for the application Ai.
Additionally, it takes a while to run the service placement algorithm and provides the
required resources for each of the services of application Ai. This time also should be
added to the application deployment time.

526 S. AZIZI, F. KHOSROABADI, AND M. SHOJAFAR

The time it takes the application Ai services are deployed on the computational
resources until the results are returned to the user, is known as the makespan of the
application Ai. Based on the assumed model, i.e., the dependency between services,
the makespan of application Ai can be calculated by the sum of the time required
to run all of its services and the delay of the communicational link between the two
services that are interdependent and placed on different devices.

4. Problem Formulation

There are several decision variables that we use to describe the service placement
policy. In general, we use the variable xdev

i,j to indicate that the service Si,j on which

dev computing device is located, where dev ∈ D. For example, if xfk

i,j = 1, then the

service Si,j is located on the fog cell fk, 1 ≤ k ≤ n.This can also be defined for the
variables xF

i,j , x
N
i,j and xC

i,j . In mathematical terms:

xfk

i,j =

{
1, if si,j is placed on the fog cell fk

0, otherwise
(4.1)

xF
i,j =

{
1, if si,j is placed on the fog control node

0, otherwise
(4.2)

xN
i,j =

{
1, if si,j is placed on the neighbor colony

0, otherwise
(4.3)

xC
i,j =

{
1, if si,j is placed on the cloud

0, otherwise
(4.4)

4.1. Optimization Formula. To provide quick response time to users and reduce
costs, it is imperative that the resources provided by the fog landscape can be utilized
well. To this end, our goal is to solve the problem of module placement in a fog-cloud
computing system in such a way that the number of assigned services to fog nodes be
maximized. So the problem can be formulated as follows:

maximize
n∑

i=1

|Ai|∑
j=1

(m∑
k=1

xfk

i,j + xF
i,j + xN

i,j

)
(4.5)

Subject to the following constraints:

∑m

k=1
xfk

i,j + xF
i,j + xN

i,j + xC
i,j = 1, ∀Si,j (4.6)

n∑
i=1

|Ai|∑
j=1

xD
i,jS

R
i,j ≤ CR

D, ∀k ∈ {1, ...,m}, D = {RF , F,N,C}, R = {cpu, ram} (4.7)

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 521-534 527

xfk

i,j , x
F
i,j , x

N
i,j , x

C
i,j ∈ {0, 1} (4.8)

RAi ≤ DAi ∀Ai ∈ A (4.9)

Constraint (4.6) indicates that each service Si,j can be located only on a specific comput-
ing resource. Constraint (4.7) indicates that the total CPU and RAM of all services hosted
on a computing device should not exceed the amount of CPU and RAM capacity of that
device. The domain of decision variables is defined by constraint (4.8). Finally, constraint
(4.9) ensures that the deadline for each application must be met. With considering the opti-
mization formula (4.5) and its constraints, it is clear that the proposed model for the service
placement problem is an Integer Linear Programming (ILP) problem. As a result, proposing
an accurate solution to this problem in large scale is almost impossible. In the next section,
we propose a simple, but the efficient heuristic algorithm for solving this problem that can
find a promising answer in the polynomial time.

5. Proposed Algorithm

To deal with the issue of service placement in the fog-cloud computing environment,
in this work, we propose an efficient heuristic algorithm called Most Delay − sensitive
Application F irst (MDAF). It is worth noting that our proposed algorithm runs on the
controller component of each fog control node. The details of this algorithm are given below.

The main idea behind MDAF is that the delay-sensitive application services are placed
on resources that are closer to the client as much as possible. Given that the fog resources
are closer to clients than the cloud resources, the first computational devices in the fog are
used. We use the deadline of each application to determine its delay sensitivity.

Based on the assumed architecture, each IoT device is located inside a colony and is
directly connected to a specific fog cell. When an IoT device (client) initiates an application,
usually its sensing service by default is placed on the corresponding fog cell. Additionally,
the actuating service of each application also has a specific destination which is selected
from one of the fog cells. All processing services are submitted to the fog control node of the
corresponding colony. The MDAF algorithm is run there to place the processing services of
each application on appropriate computational devices.

In this work, we assume that processing services can run on one of the three computational
devices F , N , and C. The pseudocode of the proposed algorithm is presented in Algorithm
1.

In Algorithm 1, the proposed algorithm first sorts applications in ascending order based
on their deadlines (line 1). Computational devices are sorted according to their proximity
to users in the corresponding colony (line 2). In other words, at first, the resources of the
fog control node are utilized, after which the resources of the nearest neighbor colony and
finally, the cloud resources are being used. This ensures that application services that have
a short deadline will be placed on devices that have less response time for them. So, for each
application Ai, its services are first put on the fog control node as far as possible. If this node
does not have enough resources to allocate one of the services of this application, its services
will be sent to the next computational device (lines 3-11). Furthermore, the algorithm tries
to place services as far as possible on the fog computing resources to not only providing QoS
but also reducing the cost of execution in the cloud.

528 S. AZIZI, F. KHOSROABADI, AND M. SHOJAFAR

Algorithm 1 Service Placement Algorithm

1: Sort application list A in ascending order of deadline;
2: Sort computational devices in the list D in order of closeness to the client;
3: for each application Ai in list A do
4: curdev = F ;
5: for each processing service in Ai do

say service Si,j

6: while service Si,j has not been placed do
7: if Scpu

i,j ≤ Ccpu
curdev && Sram

i,j ≤ Cram
curdev then

8: place Si,j on curdev;
9: Ccpu

curdev = Ccpu
curdev − Scpu

i,j ;
10: Cram

curdev = Cram
curdev − Sram

i,j ;
11: break ;
12: else
13: curdev = next device in the list D;

Table 1. Application deadlines

Application DAk
(ms)

A1 3000
A2 2500
A3 3000
A4 4500
A5 2700

6. Performance Evaluation

We have implemented our proposed algorithm on the iFogSim simulator [4] and compared
its performance with edge-ward and cloud-only strategies. The edge-ward strategy empha-
sizes on the implementation of services near the edge of the network. Devices on the edge of
the network may not have sufficient computational resources to serve all the modules of an
application. In such situations, higher-level devices are checked in terms of computational
resources to find the appropriate device for services. In cloud-only strategy, all application
services run on cloud data centers. In such applications, the sense-process-actuate loop works
in this way that sensors send the received data to the cloud to run and after running services
in the cloud, the results are returned to the user via actuators.

6.1. Simulation Settings. To evaluate the proposed algorithm, we consider five applica-
tions with different deadline requirements (see Table 1). In this work, the deployment time
of applications is equal to zero. Each application consists of four services, where the required
resources for each service and the execution time of each service has been listed in Table 2.
(U [a, b] indicates a uniform random number between a and b).

We have considered a fog colony which includes five fog cells connected to the fog control
node. The latency of the communication link between the fog control node and the cloud, the

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 521-534 529

Table 2. The resource demand of each service

Service Scpu
i,j (MIPS) Scpu

i,j (MB) Execution Time (ms)

Sense 50 30 U [100, 1000]
Process1 200 10 U [100, 1000]
Process2 200 20 U [100, 1000]
Actuate 50 20 U [100, 1000]

Table 3. Characteristics of computational devices

Device Type CPU(MIPS) RAM(MB)

cloud 20000 20000
fog control node 1000 1024
fog cells 250 256

Table 4. Performance comparison

Scenario
RAi

(ms) DAi
−RAi

(ms) Placement (%) Cost

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 fj F N C ($)

MDAF 2147 2126 2247 4191 2430 853 374 753 309 270 50 25 15 10 8.8
edge-ward 2047 2126 4147 4091 4430 953 374 -1147 409 -1730 50 25 0 25 14
cloud-only 4047 4126 4147 4091 4430 -1047 -1626 -1147 409 -1730 50 0 0 50 23

control node and the nearest neighbor node, the control node, and fog cells are respectively
1000, 50, and 10 ms. The characteristics of computational devices are shown in Table 3.

6.2. Evaluation Parameters. One of the parameters for evaluating a service placement
plan is to check whether this plan complies with the applications deadline or not. To do
this, you must calculate the response time of the applications. The difference between
response time and application deadline (DAi − RAi) determines how the service placement
plan performs in response to an application deadline, and whether it violates the application
deadline. Another evaluation parameter is the utilization of devices (fog or cloud) resulting
in the ratio of the number of services placed on the device to the total number of services.
Whatever an algorithm can increase the utilization of a device, or in other words, whatever
the policies of an algorithm go to place more services on a single device, the cost, and energy
consumption of the devices are reduced. The philosophy of using the fog environment is to
use the maximum capacity of the fog devices, and as far as possible, services will be sent
less to cloud resources.

6.3. Results. To compare the performance of our algorithm, MDAF, with edge-ward and
cloud-only strategies, the response time of each application, the amount of applications
deadline violation, resource utilization and the cost of execution in the cloud is collected
that a summary of them is shown in Table 4.

530 S. AZIZI, F. KHOSROABADI, AND M. SHOJAFAR

6.3.1. Violation of applications deadline and services delay. In Table 4, the edge-ward policy
violates application A3 deadline at 1,147 ms and application A5 at 1,730 ms. In the cloud-
only policy, the deadlines for applications of A1 , A2 , A3 and A5 are violated in 1,047, 1,626,
1,147, and 1,730 ms, respectively. But in MDAF policy, no application is violated. Because
our algorithm has a special interest in the applications deadline and it applies the module
placement policy from the minimum deadline to the maximum deadline for applications.
The response time of applications and their deadlines was obtained in three policies is shown
in Figure 2.

Figure 2. Response times of applications.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A1 A2 A3 A4 A5

Re
sp
on

se
 T
im

e
(m

s)

Application

MDAF edge‐ward cloud‐only DeadLine

In Figure 2, the cloud-only policy violates the deadlines for applications of A1, A2, A3

and A5. The edge-ward policy does not comply deadlines of the A3 and A5 applications,
but in the MDAF scenario, all application deadlines have complied. Because in the MDAF
scenario, applications are sorted in ascending order based on their deadlines. For this reason,
applications which have less deadline, are served faster than those with higher deadlines. But
this does not comply in edge-ward and cloud-only, because of this, the response time of the
services violates specified deadline.

We conduct another experiment to show the effect of the Application parameters on
response times. In this experiment, we changed the deadline parameter of the Application
A4, and we observed the response time of all the Applications, the results of which are shown
in Figure 3. Application A4 was selected for this experiment since it has the highest response
time. In Figure 3, when the deadline is less than 2500 milliseconds, the A4 application
services are assigned only to the fog control node because in this case, the A4 deadline is
lower than other applications. Above 2500 ms and less than 3000 ms, A4 processing services
are placed in the control node and neighbor control node. Above 3000 ms, A4 processing
services are placed in cloud data centers.

6.3.2. Utilization of the fog landscape. In all scenarios, the sensing and actuating services
are placed on fog cells within the fog colony. However, in the MDAF, 5, 3 and 2 services
are placed on the control node, the closest neighbor colony, and cloud, respectively. In the
edge-ward, 5 services are placed on the control node and 5 services are placed on the cloud.
In the cloud-only scenario, 10 services are placed on the cloud. Figure 4 shows the utilization
of fog landscape in different scenarios.

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 521-534 531

Figure 3. Impact of application A4 deadline on response times.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2000 2500 2700 2900 3000 3500 4000

Re
sp
on

se
 T
im

e
(m

s)

Deadline of Application A4 (ms)

A1 A2 A3 A4 A5

Figure 4. Utilization of resources.

0

20

40

60

80

100

MDAF edge‐ward cloud‐only

Se
rv
ic
e
Pl
ac
em

en
t
(%

)

Policy

fog cells control node neighbor colony cloud

6.3.3. Cost of execution in cloud. The cost of execution in the edge-ward and cloud-only is
14$ and 23$, respectively. The execution cost in the MDAF is just 8.8$, which constitutes
62% of edge-ward and 38% of cloud-only strategies. The results are shown in Figure 5. As
we can see from Figure 5, our proposed algorithm significantly reduces the execution cost.

6.3.4. Energy consumption. The amount of energy consumed by mobile devices, fog nodes,
and cloud data centers is compared using the three MDAF, edge-ward, and cloud-only sce-
narios in Figure 6. As shown in Figure 6, the MDAF algorithm reduces the energy consumed
by fog devices by 1.34% compared to the edge-ward algorithm. The total energy consumed
by various devices considering the proposed algorithm, edge-ward and cloud-only policies is
presented in Figure 7. As we can observe, the proposed algorithm is more energy-efficient
than the other two policies. Indeed, it saves approximately 0.038% of the energy compared
to cloud-only and 0.66% of the energy compared to the edge-ward.

532 S. AZIZI, F. KHOSROABADI, AND M. SHOJAFAR

Figure 5. Cost of Execution in Cloud.

0.00E+00

5.00E+09

1.00E+10

1.50E+10

2.00E+10

2.50E+10

MDAF edge‐ward cloud‐only

Co
st
 (
G
$)

Policy

Figure 6. The total energy consumed by different devices (mobile
phones, edge devices, and the cloud) under various policies (MDAF, edge-
ward and the cloud-only policy).

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

1.60E+07

mobile devices fog devices cloud

En
er
gy
 C
on

su
m
pt
io
n
(K
J)

Devices

MDAF edge‐ward cloud‐only

7. Conclusion and Future Direction

In this paper, we propose an efficient heuristic algorithm to solve the service placement
problem in fog-cloud computing environments. Our algorithm places the most delay-sensitive
application services closer to the IoT devices. We compare the performance of the proposed
algorithm with two baselines, edge-ward and cloud-only. Unlike the baselines, the proposed
algorithm does not violate deadlines of applications. Furthermore, our algorithm is more
effective utilizing fog landscape resources. More specifically, the proposed approach reduces
the execution cost by about 37% and 62% compared to edge-ward and cloud-only policies,
respectively. In the future, we plan to concentrate on the energy efficiency aspect of the
problem to provision resources more effectively in fog-cloud computing paradigm.

CMDE Vol. 7, No. 4 (Special Issue), 2019, pp. 521-534 533

Figure 7. The total energy consumed by different devices (mobile de-
vices, fog devices, and the cloud) undervarious policies (MDAF, edge-ward
and the cloud-only policy).

1.61E+07

1.62E+07

1.63E+07

1.64E+07

MDAF edge‐ward cloud‐only

To
tl
al
 E
ne

rg
y
Co

ns
um

pt
io
n
(K
J)

Policy

References

[1] M. Aazam, I. Khan, A. A.Alsaffar, and E. N. Huh, Adaptive finite volume methods for hyperbolic

problems, Proceedings of 2014 11th International Bhurban Conference on Applied Sciences &
Technology (IBCAST) Islamabad, Pakistan, 14th-18th January, 2014 (Uxbridge, 1993), Wiley,

Chichester, 1994, 289–297.

[2] F. Bonomi, The smart and Connected Vehicle and the Internet of Things, Invited Talk, Work-
shop on Synchronization in Telecommunication Systems, 2013.

[3] M. M. Mahmoud, J. J. Rodrigues, K. Saleem, J. Al-Muhtadi, N. Kumar, and V. Korotaev,
Towards energy-aware fog-enabled cloud of things for healthcare, Computers & Electrical Engi-

neering, vol. 67, pp. 58-69, 2018.

[4] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, iFogSim: A toolkit for modeling
and simulation of resource management techniques in the Internet of Things, Edge and Fog

computing environments, Software: Practice and Experience, 47(9) (2017), 1275–1296.

[5] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, Optimal workload allocation in fog-cloud
computing toward balanced delay and power consumption, IEEE Internet of Things Journal,

3(6) (2016), 1171–1181.

[6] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, Resource provisioning for IoT services in
the fog, 2016 IEEE 9th international conference on service-oriented computing and applications

(SOCA), (2016), 32-39.

[7] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, Towards qos-aware fog service placement,
2017 IEEE 1st international conference on Fog and Edge Computing (ICFEC), (2017), 89-96.

[8] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,Optimized IoT service place-
ment in the fog, Service Oriented Computing and Applications, 11(4) (2017), 427-443.

[9] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya, Q. Zhang, W. Xie and

J. P. Jue, Qos-aware dynamic fog service provisioning, arXiv preprint, arXiv:1802.00800.
[10] M.-Q. Tran, D. T. Nguyen, V. A. Le, D. H. Nguyen, and T. V. Pham, Task Placement on

Fog Computing Made Efficient for IoT Application Provision, Wireless Communications and

Mobile Computing, 2019 (2019), Article ID 6215454, 17 pages.
[11] Q. T. Minh, D. T. Nguyen, A. Van Le, H. D. Nguyen, and A. Truong, Toward service placement

on Fog computing landscape, 4th NAFOSTED conference on information and computer science,

(2017), 291-296.

534 S. AZIZI, F. KHOSROABADI, AND M. SHOJAFAR

[12] S. K. Mishra, D. Puthal, J. J. Rodrigues, B. Sahoo, and E. Dutkiewicz, Sustainable Service

Allocation Using a Metaheuristic Technique in a Fog Server for Industrial Applications,IEEE

Transactions on Industrial Informatics, 14(10) (2018), 4497-4506.
[13] R. Mahmud, K. Ramamohanarao, and R. Buyya, Latency-aware application module manage-

ment for fog computing environments, ACM Transactions on Internet Technology (TOIT), 19(1)

(2018), Article No. 9, 21 pages.
[14] C. Guerrero, I. Lera, and C. Juiz, On the Influence of Fog Colonies Partitioning in Fog Ap-

plication Makespan, 2018 IEEE 6th International Conference on Future Internet of Things and

Cloud (FiCloud), (2018), 377-384.
[15] N. K. Giang, M. Blackstock, R. Lea, and V. C. Leung, Developing iot applications in the fog:

A distributed dataflow approach, 2015 IEEE 5th International Conference on the Internet of

Things (IOT), (2015), 155-162.

	1. Introduction
	2. Related Work
	3. The system model and problem statement
	3.1. Assumed Architecture
	3.2. Problem Statement

	4. Problem Formulation
	4.1. Optimization Formula

	5. Proposed Algorithm
	6. Performance Evaluation
	6.1. Simulation Settings
	6.2. Evaluation Parameters
	6.3. Results

	7. Conclusion and Future Direction
	References

