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Abstract In this paper, a modification of the Legendre collocation method is used for solving
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1. Introduction

The fractional partial differential equations (FPDEs) are used in numerous prob-
lems of physics, engineering, chemistry, mathematics, biology, and viscoelasticity [1,
15, 19, 22]. Most fractional differential equations suffer from lacking of exact ana-
lytical solutions. So many authors are seeking ways to numerically solve these prob-
lems [4, 25].
Recently, some different methods for solving fractional differential equations have been
given such as variational iteration method [7], homotopy perturbation method [23],
adomian decomposition method [8], homotopy analysis method [6], and collocation
method [21]. A least square finite element solution of a fractional-order two-point
boundary value problems, has been studied in [5]. Sumudu transform method for
solving fractional differential equations and fractional diffusion-wave equation as well
proposed in [3]. Wavelet operational method for solving fractional partial differential
equations used in [18]. Method of lines to transform the space fractional Fokker-
Planck equation into a system of ordinary differential equations studied in [13, 14].
The space fractional diffusion equations are solved numerically. Khader used Legendre
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collocation method to discretize space fractional diffusion equations to obtain a linear
system of ordinary differential equations and he solved the resulting system by finite
difference method [10]. Dehghan and et al. [24] proposed Tau approach to solve space
fractional diffusion equations.

2. Preliminary ideas and definitions

Definition 2.1. The Caputo fractional derivative operator C0 D
α
x of order α is de-

fined in the following form [22]:

C
0 D

α
xf(x) = 1

Γ(m−α)

∫ x
0

f(m)(t)
(x−t)α−m+1 dt, α > 0,

where m− 1 < α ≤ m, m ∈ N , x > 0.

Caputo fractional derivative operator is a linear operation and for the Caputo
derivative we have [11]:

C
0 D

α
x c = 0, (2.1)

C
0 D

α
xx

n =

{
0, n ∈ N0 and n < dαe,

Γ(n+1)
Γ(n+1−α)x

n−α, n ∈ N0 and n ≥ dαe, (2.2)

where c is a constant and dαe denotes the smallest integer greater than or equal to
α and N0 = {0, 1, 2, . . .}. For α ∈ N0, the Caputo differential operator coincides with
the classic differential of integer order ( [9, 11, 20]).

Definition 2.2. The weighted− LPnorm is defined in the following form [2]:

‖u‖Lpw(−1,1) = (

∫ 1

−1

|u(x)|pw(x)dx)1/p for 1 ≤ p <∞, (2.3)

where we also have

‖u‖L∞w (−1,1) = sup
−1≤x≤1

|u(x)| = ‖u‖L∞(−1,1). (2.4)

The space of functions for which a particular norm is finite, forms a Banach space
indicated by Lpw(−1, 1).
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Definition 2.3. We define natural Sobolev norms as follows [2]:

‖u‖Hmw (−1,1) = (

m∑
k=0

‖u(k)‖2L2
w(−1,1))

1/2. (2.5)

The Hilbert space associated with this norm is denoted by Hm
w (−1, 1). We also define

the seminorms

|u|Hm,Nw (−1,1) = (

m∑
k=min(m,N+1)

‖u(k)‖2L2
w(−1,1))

1/2. (2.6)

2.2. A brief review of the Legendre polynomials

The well known Legendre polynomials are defined on the interval [-1, 1] as [10]

L0(z) = 1,

L1(z) = z,

Lk+1(z) =
2k + 1

k + 1
zLk(z)− k

k + 1
Lk−1(z), k = 1, 2, . . . . (2.7)

It is often more useful to utilize some other Legendre polynomials introduced next. In
order to use such polynomials on the interval x ∈ [0, 1], we define the so called shifted
Legendre polynomials by introducing the change of variable z = 2x − 1. We denote
the shifted Legendre polynomials Lk(2x − 1) by P ∗k (x), then P ∗k (x) can be obtained
as follows:

P ∗k+1(x) =
(2k + 1)(2x− 1)

(k + 1)
P ∗k (x)− k

k + 1
P ∗k−1(x), k = 1, 2, ..., (2.8)

where P ∗0 (x) = 1 and P ∗1 (x) = 2x − 1. The Legendre polynomials P ∗k (x) of degree k
is given by the following:

P ∗k (x) =

k∑
i=0

(−1)k+i(k + i)!xi

(k − i)(i!)2
, (2.9)

where P ∗k (0) = (−1)k and P ∗k (1) = 1. The orthogonality condition is∫ 1

0

P ∗i (x)P ∗j (x)dx =

{
1

2i+1 , i = j

0, i 6= j.
(2.10)
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A function y(x), which is square integrable in [0, 1], may be expressed in terms of
shifted Legendre polynomials as

y(x) =

∞∑
i=0

yiP
∗
i (x),

where

yi = (2i+ 1)

∫ 1

0

y(x)P ∗i (x)dx, i = 1, 2, . . . . (2.11)

In practice, only the first (m+1)-terms of shifted Legendre polynomials are considered.
If so, we have

ym(x) =

m∑
i=0

yiP
∗
i (x). (2.12)

Theorem 2.1. Let y(x) be approximated by shifted Legendre polynomials as Eq.
(2.12) and also suppose α > 0, then [11]

C
0 D

α
x (ym(x)) =

m∑
i=dαe

i∑
k=dαe

yiw
(α)
i,k x

k−α, (2.13)

where w
(α)
i,k is given by

w
(α)
i,k =

(−1)(i+k)(i+ k)!

(i− k)!(k)!Γ(k + 1− α)
. (2.14)

3. The proposed method

We consider space fractional diffusion equation

∂u(x, t)

∂t
= d(x, t)

∂αu(x, t)

∂xα
+ s(x, t), (3.1)

a < x < b, 0 ≤ t ≤M, 1 < α ≤ 2,

with initial condition

u(x, 0) = u0(x), a < x < b, (3.2)

and boundary conditions

u(a, t) = u(b, t) = 0, (3.3)
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where the function s(x, t) is a source term.
We apply the Legendre collocation method to discretize Eq. (3.1) and to get a

linear system of ordinary differential equations and use the finite difference method
(FDM) [16, 17] to solve the resulting system, and obtain the coefficients in the ap-
proximate solution. If so, u(x, t) is approximated by

um(x, t) =

m∑
i=0

λi(t)P
∗
i (x). (3.4)

Now from Eqs. (3.1), (3.2) and using Theorem 2.1 we have

m∑
i=0

dλi(t)

dt
P ∗i (x) = d(x, t)

m∑
i=dαe

i∑
k=dαe

λi(t)w
(α)
i,k x

k−α + s(x, t). (3.5)

Collocating, Eq. (3.5) at (m+ 1− dαe) points xp yields

m∑
i=0

dλi(t)

dt
P ∗i (xp) = d(xp, t)

m∑
i=dαe

i∑
k=dαe

λi(t)w
(α)
i,k x

k−α
p + s(xp, t), (3.6)

p = 0, 1, ...,m− dαe.

Now we take advantage of roots of shifted Legendre Polynomials P ∗m+1−dαe(x) as

suitable collocation points.
By substituting Eqs.(3.4) and (2.13) into the boundary conditions (3.3) we get

m∑
i=0

P ∗i (a)λi(t) = 0,

m∑
i=0

P ∗i (b)λi(t) = 0. (3.7)

If so, dαe equations obtained from (3.7), along with m+1-dαe equations obtained from
(3.6) give (m+1) ordinary differential equations which may be solved by using FDM,
i=0,1,...,N, τ = M

N , 0 ≤ ti ≤ M, ti = iτ, to get the m unknown λi, i=0,1,...,m, in
various time levels tn. By determining the unknowns λi(tn), the approximate m de-
gree polynomials at different time of tn are obtained as follows:

um(x, tn) =

m∑
i=0

λi(tn)P ∗i (x) = λnoP
∗
0 (x) + λn1P

∗
1 (x) + λn2P

∗
2 (x) + ...+ λnmP

∗
m(x)

= λ́no + λ́n1x+ λ́n2x
2 + ...+ λ́nmx

m, (3.8)
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in which T is the final time and λni = λi(tn), λ́ni x
i = λni P

∗
i (x).

Assume that we have accurate values uex(x, tn). Now for improving the proposed
method, first we consider the following average:

uNewap(1)(x, tn) =
1

2
[uap(x, tn) + uex(x, tn)], (3.9)

as our first approximate solution, where uex and uap stand for exact and approximate
solution of Eq. (3.1) and uNewap(1) denote the first approximate solution obtained.
It can be seen that

|uNewap(1)(x, tn)− uex(x, tn)| < |uap(x, tn)− uex(x, tn)|. (3.10)

This confirms that in the first stage the approximate solution gets better with respect
to Eq. (3.8).

In the second step, we put

uNewap(2)(x, tn) =
1

2
[uNewap(1) + uex(x, tn)],

it can be seen that

|uNewap(2)(x, tn)− uex(x, tn)| < |uNewap(1)(x, tn)− uex(x, tn)|,

this shows that

|uNewap(2)(x, tn)| < |uNewap(1)(x, tn)|.

Proceeding further, are can conclude that in the (n-1)-th stage we have

uNewap(n)(x, tn) < uNewap(n−1)(x, tn). (3.11)

Consequently, the amount of |uNewap(n)(x, tn)−uex(x, tn)| get smaller as the calcula-
tion goes ahead, and the calculation error decreases. The numerical results obtained
by virtue of the proposed scheme has been reported throughout the tables. It is no-
table that iteration calculation is shown by i.
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4. Error analysis and convergence

This section consists of the convergence analysis and getting an upper bound for
the error of the proposed method.

Theorem 4.1. The error |ET (m)| = |Dαy(x)−Dαym(x)| for the approximation
of Dαy(x) by Dαym(x) has the following upper bound [11]

|ET (m)| ≤
∞∑

i=m+1

yi(

i∑
k=dαe

k−dαe∑
j=0

θi,j,k)|, (4.1)

where

θi,j,k =
(−1)i+k(i+ k)!(2j + 1)

(i− k)!(k)!Γ(k − α+ 1)
×

j∑
r=0

(−1)j+r(j + r)!

(j − r)!(r!)2(k − α+ r + 1)
.

Theorem 4.2. (Legendre truncation theorem). The truncation error u(x)−uN (x),

where uN (x) =
∑N
k=0 ckP

∗
k (x), is the truncated Legendre series of u, satisfies the

inequality [2]

‖u(x)− uN (x)‖Lpw(−1,1) ≤ CN−m
m∑

k=min(m,N+1)

‖u(k)‖Lpw(−1,1), (4.2)

for 1 ≤ p < ∞, and for all functions u whose distributional derivatives of order up
to m belong to Lpw(−1, 1), C is a constant and depends on m.
If so, when N →∞, we have

0 ≤ limN−→∞(‖u(x)− uN (x)‖Lpw(−1,1)) ≤

limN−→∞(CN−m
∑m
k=min(m,N+1) ‖u(k)‖Lpw(−1,1)).

(4.3)

In the equation (3.14), if max |
∑m
k=min(m,N+1) ‖u(k)‖Lpw(−1,1)| ≤M. Then

lim
N−→∞

(CN−m
m∑

k=min(m,N+1)

‖u(k)‖Lpw(−1,1)) = 0

.
Now, according to(3.14), and also according to the squeeze theorem, we have

lim
N−→∞

(‖u(x)− uN (x)‖Lpw(−1,1)) = 0.
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Right now, to discuss the modified method an error analysis is presented. By using
polynomial approximations obtained Eq. (3.8), and considering

P0(x, tn) = um(x, tn) =

m∑
i=0

λi(tn)P ∗i (x), (4.4)

we have:

|P0(x, tn)− uex(x, tn)| ≤ ε0. (4.5)

where ε0 is very small amount.
Also from

uNewap(1)(x, tn) =
1

2
[um(x, tn) + uex(x, tn)] = P1(tn), (4.6)

we have:

|P1(x, tn)− uex(x, tn)| ≤ ε1. (4.7)

where ε1 is very small amount.
Considering the ties (4.3), (4.4) and (4.5), we have

|P1(x, tn)− uex(x, tn)| ≤ ε1 ⇒ |
1

2
[P0(x, tn) + uex(x, tn)]− uex(x, tn)| ≤ ε1

⇒ |P0(x, tn)− uex(x, tn)| ≤ 2ε1 ≤ ε0,

where yield

ε1 ≤
ε0

2
. (4.8)

Next considering uNewap(2)(x, tn) = 1
2 [um(x, tn) + uex(x, tn)] = P2(tn) , we have

|P2(x, tn)− uex(x, tn)| ≤ ε2 ⇒ |
1

2
[P1(x, tn) + uex(x, tn)]− uex(x, tn)| ≤ ε2,

⇒ |P1(x, tn)− uex(x, tn)| ≤ 2ε2 ⇒ |
1

2
[P0(x, tn) + uex(x, tn)]− uex(x, tn)| ≤ 2ε2,

⇒ |P0(x, tn)− uex(x, tn)| ≤ 2× 2ε2 ≤ ε0,
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which results in

ε2 ≤
ε0

22
, (4.9)

going ahead process, the n-th stage will be as

εn ≤
ε0

2n
. (4.10)

where εn is very small amount.
Accordingly we get the following result

|Pn(x, tn)− uex(x, tn)| ≤ εn ≤
ε0

2n
. (4.11)

Now we deduce that

0 ≤ lim
n→∞

(|Pn(x, tn)− uex(x, tn)|) ≤ lim
n→∞

(
ε0

2n
). (4.12)

Resit now, according to Eq. (4.12) and also the squeeze theorem, we have

lim
n→∞

(|Pn(x, tn)− uex(x, tn|) = 0.

This confirms the convergence issue of the method.

Remark 1. The presented method, can also be used for the numerical solution
of the fractional Riccati differential equation.

Dαu(t) + u2(t)− 1 = 0, t > 0, 0 < α ≤ 1,

with the initial condition u(0) = u0.

5. Numerical results

Example 5.1. In this example, we consider the fractional Riccati differential
equation of the form

Dαu(t) + u2(t)− 1 = 0, t > 0, 0 < α ≤ 1, (5.1)
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with the initial condition

u(0) = u0, (5.2)

and the parameter α, refers to the fractional order of the time derivative.
For α = 1; the Eq. (5.1) is the standard Riccati differential equation

du(t)

dt
+ u2(t)− 1 = 0,

the exact solution to this equation is

u(t) =
e2t − 1

e2t + 1
.

Now by using Eqs. (2.12) and (2.13), with m = 5, the fractional Riccati differential
equation (5.1) is transformed to the following approximated form

5∑
i=1

i∑
k=1

ciw
(α)
i,k t

k−α + (

5∑
i=0

ciP
∗
i (t))2 − 1 = 0, (5.3)

where w
(α)
i,k is defined in Eq. (2.14).

Also, the initial condition Eq. (5.2) is given by

5∑
i=0

ci(P
∗
i (0)) = u0. (5.4)

We now collocate Eq. (5.3) at (m+ 1− dαe) points tp as

5∑
i=1

i∑
k=1

ciw
(α)
i,k t

k−α
p + (

5∑
i=0

ciP
∗
i (tp))

2 − 1 = 0, p = 0, 1, 2, 3, 4. (5.5)

We know that tsp are the roots of shifted Legendre polynomial P ∗5 (t), i.e.

t0 = 0.5, t1 = 0.2307, t2 = 0.7692, t3 = 0.0469, t4 = 0.9530.

By using Eqs. (5.4) and (5.5), we obtain a system of 6 non-linear algebraic equations
with unknowns ci, i = 0, 1, . . . , 5.
This system of equations is solved by utilizing the Newton iteration method, for
determining the unknowns ci, i = 0, 1, . . . , 5, and therefore, the approximate solution
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Table 1. Comparison of absolute errors for u(x) at m = 5 with
different values of i for Example 5.1 by modified method.

x i=0 i=15 i=25 i=30
|Error(0)| |Error(15)| |Error(25)| |Error(30)|

0.0 4.0332×10−17 0.00000000 0.00000000 0.00000000
0.1 2.5836×10−5 7.8848×10−10 7.0090×10−12 2.3980×10−14

0.2 6.2295×10−5 1.9011×10−9 1.8565×10−12 5.8092×10−14

0.3 3.2572×10−5 9.9402×10−10 9.7061×10−12 3.0253×10−14

0.4 2.1661×10−5 6.6104×10−10 6.4559×10−12 2.0206×10−14

0.5 4.3800×10−5 1.3360×10−9 1.3054×10−12 4.0689×10−14

0.6 1.6488×10−5 5.0319×10−10 4.9138×10−12 1.5321×10−14

0.7 3.0450×10−5 9.2928×10−10 9.0749×10−12 2.8421×10−14

0.8 4.7536×10−5 1.4507×10−9 1.4167×10−12 4.4408×10−14

0.9 1.4390×10−5 4.3915×10−10 4.2899×10−12 1.3544×10−14

1.0 3.9800×10−6 1.2146×10−10 1.1879×10−12 3.7747×10−15

is obtained via

u5(t) =

5∑
i=0

ciP
∗
i (t). (5.6)

More specifically for α = 1, Eq. (5.6) gets replaced by

u5(t) =

5∑
i=0

ciP
∗
i (t) = −4.03323× 10−17 + 0.9993x+ (5.7)

0.0157x2 − 0.4189x3 + 0.1806x4 − 0.0152x5.

Based upon our method, our results have been compared with the exact solution,
in Table 1 and 2. In this tables, errors have been reported for different values of i.

Example 5.2. In this section, we consider space fractional diffusion equation (3.1)
with α = 1.8, of the form [10]

∂u(x, t)

∂t
= d(x, t)

∂1.8u(x, t)

∂x1.8
+ s(x, t),

where, 0 < x < 1, with the diffusion coefficient: d(x, t) = Γ(1.2)x1.8, and the source
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Table 2. Comparison of absolute errors for u(x) at m = 5 with
different values of i for Example 5.1 by modified method.

x i=35 i=40
|Error(35)| |Error(40)|

0.0 0.00000000 0.0000×10−17

0.1 6.3837×10−16 4.1633×10−16

0.2 1.8318×10−15 5.5511×10−17

0.3 9.4369×10−16 0.0000000000
0.4 5.5511×10−16 0.0000000000
0.5 1.1657×10−15 1.1102×10−16

0.6 4.4408×10−16 0.0000000000
0.7 8.8817×10−16 0.0000000000
0.8 1.4432×10−15 0.0000000000
0.9 5.5511×10−16 0.0000000000
1.0 3.3307×10−16 0.0000000000

function: s(x, t) = 3x2(2x − 1)e−t. The initial and boundary conditions are respec-
tively as

u(x, 0) = x2(1− x),
u(0, t) = u(1, t) = 0.

The exact solution of this problem is u(x, t) = x2(1− x)e−t.

We use the present method with m=3, and approximate the solution as follows:

u3(x, t) =

3∑
i=0

λi(t)P
∗
i (x). (5.8)

In Eq. (5.8), after determining the coefficients λi(t) for T = 2 [10], the polynomial
approximation is as follows:

u3(x, 2) =

3∑
i=0

λi(t800)P ∗i (x) = λ́800
o + λ́800

1 x+ λ́800
2 x2 + λ́800

3 x3 (5.9)

= −8.67362× 10−19 + 0.00914x+ 0.07557x2 − 0.08471x3.

In Tables 4 and 5, we have reported the comparison between exact and approximate
solution, for m = 3 and time step τ = 0.0025, and final time T = 2 with different
values of i. Additionally, we have T

τ = 2
0.0025 = 800 level for 0 < x < 1.
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Table 3. Comparison of absolute errors for u(x, 2) at m = 3 and
T = 2 for Example 5.2.

x Modified method Method[10] Method [12] Method [24]

0.0 2.46519×10−32 1.70849 ×10−4 4.483787×10−3 0.0000000
0.1 2.60209×10−18 2.10940 ×10−5 4.479660×10−3 2.89×10−5

0.2 5.20417×10−18 1.76609 ×10−4 4.201329×10−3 1.09×10−4

0.3 8.67362×10−18 3.01420 ×10−4 3.695172×10−3 2.20×10−4

0.4 1.04083×10−17 4.04138 ×10−4 3.007566×10−3 3.40×10−4

0.5 1.38778×10−17 4.89044 ×10−4 2.184889 ×10−3 4.45×10−4

0.6 2.08167×10−17 4.89044 ×10−4 1.273510 ×10−3 5.15×10−4

0.7 1.38778×10−17 5.63305 ×10−4 0.319831 ×10−3 5.27×10−4

0.8 1.38778×10−17 6.33367 ×10−4 0.629793 ×10−3 4.60×10−4

0.9 2.77556×10−17 7.05677 ×10−4 1.528978 ×10−3 2.91×10−4

1.0 0.00000000000 8.82821 ×10−4 2.331347 ×10−3 0.0000000

Table 4. Comparison of absolute errors for u(x, 2) at m = 3 and
T = 2 with different values of i for Example 5.2 by modified method.

x i=0 i=5 i=10 i=20
|Error(0)| |Error(5)| |Error(10)| |Error(20)|

0.0 8.6736×10−19 2.7105×10−20 8.4703 ×10−22 8.2718 ×10−25

0.1 3.6721×10−4 1.1147 ×10−5 3.5860×10−8 3.5019×10−11

0.2 1.7110×10−4 4.9096 ×10−6 1.5342×10−7 1.4983×10−10

0.3 1.2692×10−3 3.9663×10−5 1.2394×10−7 1.2104×10−10

0.4 2.6654×10−3 8.3295 ×10−5 2.6029×10−7 2.5419×10−10

0.5 4.0420×10−3 1.2631×10−4 3.9472×10−7 3.8547×10−10

0.6 5.0952×10−3 1.5922 ×10−4 4.9758×10−7 4.8591×10−10

0.7 5.5213×10−3 1.7254×10−4 5.3919×10−7 5.2655×10−10

0.8 5.0166×10−3 1.5677 ×10−4 4.8990×10−7 4.7842×10−10

0.9 3.2774×10−3 1.0242×10−4 3.2006×10−8 3.1256×10−11

1.0 0.000000000 0.0000000000 0.0000000000 0.0000000000

Example 5.3. Consider the following space fractional diffusion equation [14]

∂u(x, t)

∂t
= q(x)

∂αu(x, t)

∂xα
+ s(x, t), 0 < x < 1 (5.10)

with initial condition u(x, 0) = x4, and boundary conditions

u(0, t) = 0, u(1, t) = e−t,

where the function s(x, t) = −2e−tx4 is a source term, and q(x) = 1
24Γ(5 − α). The

exact solution to this equation is e−tx4.
By using the proposed method [10] for α = 1.2, the polynomial approximation is as
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Table 5. Comparison of absolute errors for u(x, 2) at m = 3 and
T = 2 with different values of i for Example 5.2 by modified method.

x i=25 i=30 i=35 i=45
|Error(25)| |Error(30)| |Error(35)| |Error(45)|

0.0 2.5849×10−26 0.0000000000 2.5243×10−29 2.4651×10−32

0.1 1.0904×10−11 3.4199×10−12 1.0687×10−14 9.9746×10−18

0.2 4.6822×10−12 1.4632×10−12 4.5727×10−15 5.2041×10−18

0.3 3.7826×10−11 1.1820×10−12 3.6939×10−15 3.6429×10−17

0.4 7.9436×10−11 2.4823×10−12 7.7573×10−14 7.9797×10−17

0.5 1.2046×10−10 3.7644×10−12 1.1764×10−12 1.1796×10−16

0.6 1.5185×10−10 4.7452×10−12 1.4823×10−14 1.5265×10−16

0.7 1.6454×10−10 5.1421×10−12 1.6069×10−14 1.6653×10−16

0.8 1.4995×10−10 4.6721×10−12 1.4600×10−14 1.5265×10−16

0.9 9.7975×10−11 3.0523×10−12 9.5382×10−14 1.1102×10−16

1.0 0.0000000000 2.7755×10−17 0.0000000000 2.7755×10−17

Table 6. Comparison of absolute errors for u(x, 1) at m = 4 and
T = 1 with different values of i for Example 5.3 by modified method.

x i=0 i=10 i=20 i=30
|Error(0)| |Error(10)| |Error(20)| |Error(30)|

0.0 1.3877×10−17 1.3552×10−20 1.3234 ×10−23 1.2924×10−26

0.1 9.6330×10−3 9.4080×10−6 9.1876×10−9 8.9722×10−12

0.2 1.8221×10−2 1.7700×10−5 1.7370×10−8 1.6963×10−12

0.3 2.6353×10−2 2.5735×10−5 2.5132×10−8 2.4543×10−12

0.4 3.4081×10−2 3.3228×10−5 3.2602×10−8 3.1740×10−12

0.5 4.0844×10−2 3.9887×10−5 3.8952×10−8 3.8039×10−12

0.6 4.5506×10−2 4.4439×10−5 4.3398×10−8 4.2381×10−12

0.7 4.6347×10−2 4.5261×10−5 4.4200×10−8 4.3164×10−13

0.8 4.1064×10−2 4.0101×10−5 3.9161×10−8 3.8244×10−13

0.9 2.6771×10−2 2.6143×10−5 2.5531×10−8 2.4932×10−13

1.0 4.1633×10−17 1.3254×10−17 2.1154×10−17 5.4556×10−17

follows:

u4(x, 1) =

4∑
i=0

λi(t)P
∗
i (x) = 1.3877× 10−17 + 0.1051x− 0.11004x2+ (5.11)

0.2478x3 + 0.1249x4.

In Tables 6 and 7, we have reported the comparison between exact and approximate
solution for m = 4 and ∆t = 0.001 and final time T = 1 with different values of i.
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Table 7. Comparison of absolute errors for u(x, 1) at m = 4 and
T = 1 with different values of i for Example 5.3 by modified method.

x i=50 i=60 i=70 i=80
|Error(50)| |Error(60)| |Error(70)| |Error(80)|

0.0 1.2326×10−32 1.2037×10−25 1.1754 ×10−28 1.1479×10−41

0.1 8.5545×10−18 8.1621×10−21 7.9708×10−24 7.7840×10−27

0.2 1.6170×10−17 1.4415×10−20 1.4077×10−23 1.3747×10−26

0.3 2.3546×10−17 1.8759×10−20 1.8319×10−23 1.7890×10−26

0.4 3.0377×10−17 2.1195×10−20 2.0698×10−23 2.0213×10−26

0.5 3.6120×10−17 2.1721×10−20 2.1212×10−23 2.0715×10−26

0.6 4.1643×10−17 2.0339×10−20 1.9862×10−23 1.9396×10−26

0.7 3.1334×10−17 1.7047×10−20 1.6648×10−23 1.6257×10−26

0.8 3.9887×10−17 1.1847×10−20 1.1569×10−23 1.1298×10−26

0.9 3.2607×10−17 4.7381×10−21 4.6271×10−22 4.5187×10−27

1.0 4.3826×10−18 4.2798×10−21 4.1795×10−24 4.0816×10−27

Example 5.4. In this example, we consider the following space fractional diffusion
equation [13]

∂u(x, t)

∂t
= q(x)

∂1.5u(x, t)

∂x1.5
+ s(x, t), 0 < x < 1, (5.12)

with the initial condition
u(x, 0) = (x2 + 1) sin(1),

and boundary conditions

u(0, t) sin(t+ 1), u(1, t) = 2 sin(t+ 1), for t > 0,

the source function s(x, t) = (x2 + 1) cos(t+ 1)− 2x sin(t+ 1), and q(x) = Γ(1.5)x0.5.
The exact solution of this problem is u(x, t) = (x2 + 1) sin(t+ 1).
By using the proposed method [10], the polynomial approximation is as follows:

u2(x, 1) =

2∑
i=0

λi(t)P
∗
i (x) = 0.9092 + 0.2276x+ 0.6816x2. (5.13)

In Table 8 we have reported the comparison between exact and approximate so-
lution for m = 2 and ∆t = 0.001 and final time T = 1 with different values of
i.

6. Conclusion

In this article, we offered a new modified numerical method based on the shifted
Legendre collocation method and also finite difference method to find the approxi-
mate solution of the space fractional diffusion equations and also fractional Riccati
differential equation. In this scheme, the fractional derivatives are considered in the
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Table 8. Comparison of absolute errors for u(x, 1) at m = 2 and
T = 1 with different values of i for Example 5.4 by modified method.

x i=0 i=10 i=30 i=40 i=50
|Error(0)| |Error(10)| |Error(30)| |Error(40)| |Error(50)|

0.0 0.000000000 0.000000000 0.0000000000 0.0000000000 0.00000000
0.1 2.049×10−2 2.001×10−5 1.908×10−14 1.865×10−16 0.00000000
0.2 3.643×10−2 3.557×10−5 3.392×10−14 3.308×10−16 1.11×10−16

0.3 4.781×10−2 4.669×10−5 4.453×10−14 4.352×10−16 0.00000000
0.4 5.464×10−2 5.336×10−5 5.089×10−13 4.962×10−16 0.00000000
0.5 5.692×10−2 5.558×10−5 5.301×10−13 5.173×10−16 0.00000000
0.6 5.466×10−2 5.336×10−5 5.089×10−13 4.984×10−16 1.11×10−16

0.7 4.781×10−2 4.669×10−5 4.453×10−14 4.340×10−16 1.11×10−16

0.8 3.643×10−2 3.557×10−5 3.392×10−14 3.308×10−16 1.11×10−16

0.9 2.049×10−2 2.001×10−5 1.908×10−14 1.865×10−16 0.00000000
1.0 0.00000000 1.110×10−16 1.110×10−16 0.000000000 0.00000000

Caputo sense. Comparison between our proposed method with exact solution, shows
that this method is effectively accurate and evidently the error gets smaller as the
calculation stages go ahead.
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