Application of the invariant subspace method in conjunction with the fractional Sumudu’s transform to a nonlinear conformable time-fractional dispersive equation of the fifth-order

Kamyar Hosseini
Department of Mathematics, Guilan Science and Research Branch,
Islamic Azad University, Rasht, Iran.
Department of Mathematics, Rasht Branch,
Islamic Azad University, Rasht, Iran.
E-mail: kamyar_hosseini@yahoo.com

Zainab Ayati
Department of Engineering Sciences, Faculty of Technology and Engineering,
University of Guilan, East of Guilan, Rudsar, Iran.
E-mail: zainab.ayati@guilan.ac.ir

Reza Ansari
Department of Mechanical Engineering, University of Guilan,
P. O. Box 3756, Rasht, Iran.
E-mail: r_ansari@guilan.ac.ir

Abstract
During the past years, a wide range of distinct approaches has been exerted to solve the nonlinear fractional differential equations (NLFDEs). In this paper, the invariant subspace method (ISM) in conjunction with the fractional Sumudu’s transform (FST) in the conformable context is formally adopted to deal with a nonlinear conformable time-fractional dispersive equation of the fifth-order. As an outcome, a new exact solution of the model is procured, corroborating the exceptional performance of the hybrid scheme.

Keywords. Fifth-order time-fractional dispersive equation, Conformable context, Invariant subspace method, Fractional Sumudu’s transform, A new exact solution.

2010 Mathematics Subject Classification. 34A08, 83C15.

1. Introduction

The investigation of exact solutions is one of the hottest topics in mathematical physics; since a lot of information is provided using the exact solutions. In the last years, several various schemes [5, 10–12, 19–21, 25, 26, 28, 33, 39, 41, 45] have been used to solve the nonlinear fractional differential equations. Recently, a systematic approach called the invariant subspace method [16–18, 34, 35, 38, 40, 44] has received significant attention among academic scholars. For instance, Sahadevan and Prakash [40] utilized the ISM to extract the exact solutions of time-fractional
Hunter–Saxton equation, time-fractional coupled nonlinear diffusion system, time-
fractional coupled Boussinesq equation, and time-fractional Whitman–Broer–Kaup
system in the Caputo sense and Hashemi [18] adopted the ISM along with the con-
formable fractional Laplace transform to retrieve the exact solutions of time-fractional
thin-film, Hunter–Saxton and dispersive equations in the conformable sense. For fur-
ther information check references [2–4, 6–8, 22–24, 31, 42].

The Sumudu’s transform is another famous method that was first established by
Watumala [43] to deal with the problems in engineering. The Sumudu’s transform of
a function like \(f(t) \) is given by [43]

\[
G(u) = S[f(t); u] = \int_0^\infty e^{-ut} f(ut) dt,
\]

provided that the integral exists for some \(u \). The Sumudu’s transform consists of
many interesting properties which have been pointed out by Watumala in [43]. Due to
the super importance of the integral transforms [9, 14, 27, 30, 32], the current paper
aims to utilize the ISM in conjunction with the FST in the conformable context
for handling a nonlinear conformable time-fractional dispersive equation of the fifth-
order. The conformable fractional calculus and some of its features will be reviewed
below.

Definition 1.1. For a function like \(f(t) \) defined for \(t \geq 0 \), the \(\alpha \)th order of the
conformable fractional derivative is given as [29]

\[
^{c}T_\alpha (f(t)) = \frac{d^\alpha f(t)}{dt^\alpha} = \lim_{\tau \to 0} \frac{f(t + \tau t^{1-\alpha}) - f(t)}{\tau}, \quad \alpha \in (0, 1], \quad t > 0,
\]

and \(^{c}T_\alpha (f(0)) = \lim_{t \to 0^+} ^{c}T_\alpha (f(t)) \).

Definition 1.2. For \(f : [a, \infty[\to \mathbb{R}, \ a \geq 0 \), the conformable fractional integral of \(f \) is
expressed by [29]

\[
^{c}I_\alpha^a (f(t)) = \int_a^t \frac{f(x)}{x^{1-\alpha}} dx,
\]

in which \(\alpha \in (0, 1] \).

The conformable fractional derivative provides a series of interesting features which
have been presented in [1, 15, 29].

Theorem 1.3. If \(f(t) \) and \(g(t) \) are \(\alpha \)-differentiable for \(t > 0 \) when \(\alpha \in (0, 1] \), then

i. \(^{c}T_\alpha (af(t) + bg(t)) = a^{c}T_\alpha (f(t)) + b^{c}T_\alpha (g(t)), \ \forall a, b \in \mathbb{R}. \)

ii. \(^{c}T_\alpha (\beta t^\beta) = \beta t^{\beta-\alpha}, \ \forall \beta \in \mathbb{R}. \)

iii. \(^{c}T_\alpha (f(t)g(t)) = g(t)^{c}T_\alpha (f(t)) + f(t)^{c}T_\alpha (g(t)). \)

iv. \(^{c}T_\alpha \left(\frac{f(t)}{g(t)} \right) = \frac{g(t)^{c}T_\alpha (f(t)) - f(t)^{c}T_\alpha (g(t))}{g(t)^2}. \)

v. \(^{c}T_\alpha (f(t)) = t^{1-\alpha} \frac{df(t)}{dt}. \)

Theorem 1.4. If \(f(t) \) and \(g(t) \) are differentiable and \(f(t) \) is also \(\alpha \)-differentiable, then

\[
^{c}T_\alpha (fog(t)) = t^{1-\alpha} g'(t)f'(g(t)).
\]
The outline of the present article is as follows: In the second section, the ISM is described in detail. In the third section, the FST in the conformable context and its features are introduced. In the fourth section, the ISM along with the FST in the conformable context is exerted to solve a nonlinear conformable time-fractional dispersive equation of the fifth-order. Ultimately, the last section summarizes the results of the current work.

2. INVARIANT SUBSPACE METHOD

Suppose that a nonlinear conformable time-fractional PDE can be written as

\[\frac{\partial^\alpha u(x,t)}{\partial t^\alpha} = \Xi(u(x,t)), \quad \alpha \in (0,1], \]

in which \(\Xi \) is a nonlinear differential operator with respect to the variable \(x \).

Definition 2.1. The finite-dimensional linear space

\[W_n = \text{span}\{w_1(x), w_2(x), \ldots, w_n(x)\} \]

is an invariant subspace with respect to (2.1), if \(\Xi(W_n) \subseteq W_n \).

Theorem 2.2. If \(W_n = \text{span}\{w_1(x), w_2(x), \ldots, w_n(x)\} \) is an invariant subspace with respect to (2.1), then, there exist the functions \(\psi_1, \psi_2, \ldots, \psi_n \) such that

\[\Xi\left[\sum_{i=1}^{n} \lambda_i w_i(x) \right] = \sum_{i=1}^{n} \psi_i(\lambda_1, \lambda_2, \ldots, \lambda_n) w_i(x), \quad \lambda_i \in \mathbb{R}, \ i = 1, \ldots, n. \]

Furthermore

\[u(x,t) = \sum_{i=1}^{n} \lambda_i(t) w_i(x), \]

is the solution of Eq. (2.1), if the coefficients \(\lambda_i(t) \) gratify the following system of conformable FDEs

\[(T_\alpha \lambda_i(t)) = \psi_i(\lambda_1(t), \lambda_2(t), \ldots, \lambda_n(t)), \quad i = 1, \ldots, n. \]

Proof. See [18]. \(\square \)

3. FRACTIONAL SUMUDU’S TRANSFORM IN THE CONFORMABLE CONTEXT AND ITS FEATURES

In this section, the FST in the conformable context and its features are introduced. For this purpose, let’s first define the FST in the conformable context.

Definition 3.1. For a function like \(f(t) : [0, \infty[\to \mathbb{R} \), the \(\alpha \)th order of the FST in the conformable context is given as

\[S_\alpha[f(t); u] = \int_0^\infty e^{-\frac{1}{\alpha} t^\alpha} f(ut) d_\alpha t = \int_0^\infty e^{-\frac{1}{\alpha} t^\alpha} f(ut) t^{\alpha-1} dt, \]

when it is finite.

The conformable fractional Sumudu’s transform (CFST) of some elementary functions has been given below.
i. $S_{\alpha}\left[\frac{\sin(\alpha t^\alpha)}{\alpha}; u\right] = \frac{au^\alpha}{1 + (au^\alpha)^2}$.

ii. $S_{\alpha}\left[\cos(\frac{a}{\alpha} t^\alpha); u\right] = \frac{1}{1 + (au^\alpha)^2}$.

Proof.

(i):

$S_{\alpha}\left[\frac{\sin(\frac{a}{\alpha} t^\alpha)}{\alpha}; u\right] = \int_0^\infty e^{-\frac{1}{\alpha} t^\alpha} \sin(\frac{a}{\alpha} (ut)^\alpha) t^{\alpha - 1} dt \quad (x = \frac{1}{\alpha} t^\alpha)$

$= \int_0^\infty e^{-x} \sin(au^\alpha x) dx$

$= S\left[\sin(at); u^\alpha\right]$

$= \frac{au^\alpha}{1 + (au^\alpha)^2}$,

which completes the proof.

(ii):

$S_{\alpha}\left[\frac{\cos(\frac{a}{\alpha} t^\alpha)}{\alpha}; u\right] = \int_0^\infty e^{-\frac{1}{\alpha} t^\alpha} \cos(\frac{a}{\alpha} (ut)^\alpha) t^{\alpha - 1} dt \quad (x = \frac{1}{\alpha} t^\alpha)$

$= \int_0^\infty e^{-x} \cos(au^\alpha x) dx$

$= S\left[\cos(at); u^\alpha\right]$

$= \frac{1}{1 + (au^\alpha)^2}$,

which completes the proof. \square

Theorem 3.2. Let $S_{\alpha}[f(t); u]$ and $S_{\alpha}[g(t); u]$ exist. Then

$S_{\alpha}[(c_1 f + c_2 g)(t); u] = c_1 S_{\alpha}[f(t); u] + c_2 S_{\alpha}[g(t); u]$.

Proof.

$S_{\alpha}[(c_1 f + c_2 g)(t); u] = \int_0^\infty e^{-\frac{1}{\alpha} t^\alpha} (c_1 f + c_2 g)(ut) t^{\alpha - 1} dt$

$= c_1 \int_0^\infty e^{-\frac{1}{\alpha} t^\alpha} f(ut) t^{\alpha - 1} dt$

$+ c_2 \int_0^\infty e^{-\frac{1}{\alpha} t^\alpha} g(ut) t^{\alpha - 1} dt$

$= c_1 S_{\alpha}[f(t); u] + c_2 S_{\alpha}[g(t); u]$,

which completes the proof. It is clear that the CFST is a linear operator. \square

Theorem 3.3. Let $f(t) : [0, \infty) \rightarrow \mathbb{R}$ be α-differentiable and $S_{\alpha}[[T_\alpha(f(t)); u]$ exists. Then

$S_{\alpha}[[T_\alpha(f(t)); u] = \frac{S_{\alpha}[f(t); u]}{u^\alpha} - \frac{f(0)}{u^\alpha}$.
Proof.
\[
S_{\alpha} [T_{\alpha} (f(t)) ; u] = \int_{0}^{\infty} e^{-\frac{1}{\alpha}t^\alpha} t^\alpha (f(ut)) t^{\alpha-1} dt \\
= u^{1-\alpha} \int_{0}^{\infty} e^{-\frac{1}{\alpha}t^\alpha} f'(ut) dt \quad \text{integration by parts} \\
= u^{-\alpha} \left[\int_{0}^{\infty} e^{-\frac{1}{\alpha}t^\alpha} f(ut) t^{\alpha-1} dt - f(0) \right] \\
= \frac{S_{\alpha} [f(t); u] - f(0)}{u^{\alpha}}.
\]

If \(f(t) \) is \(n \) times \(\alpha \)-differentiable and \(S_{\alpha} [T_{\alpha}^{(n)} (f(t)) ; u] \) exists, then it can be readily demonstrated that
\[
S_{\alpha} [T_{\alpha}^{(n)} (f(t)) ; u] = \frac{S_{\alpha} [f(t); u] - f(0)}{u^{\alpha n}} - \frac{T_{\alpha}^{(n)} (f(0))}{u^{\alpha (n-1)}} - \cdots - \frac{T_{\alpha}^{(n-1)} (f(0))}{u^{\alpha}}.
\]

4. **Nonlinear Conformable Time-Fractional Dispersive Equation and Its New Exact Solution**

Consider the following nonlinear conformable time-fractional dispersive equation of the fifth-order \([17, 18]\)
\[
\frac{\partial^5 u(x,t)}{\partial t^5} = \lambda \frac{\partial^5 u^2(x,t)}{\partial x^5} + \mu \frac{\partial^3 u^2(x,t)}{\partial x^3} + \eta \frac{\partial u^2(x,t)}{\partial x}, \quad \alpha \in (0, 1].
\] (4.1)

As shown in \([17, 18]\), the invariant subspace for the Eq. (4.1) is
\[
W_3 = \text{span} \{1, \cos (x), \sin (x)\},
\]
if \(16\lambda - 4\mu + \eta = 0 \). To review this assertion, suppose that
\[
E = \lambda_1 + \lambda_2 \cos (x) + \lambda_3 \sin (x),
\]
and so
\[
\Xi (E) = 4 (16\lambda - 4\mu + \eta) \lambda_2 \lambda_3 \cos^2 (x) \\
+ ((-2 (16\lambda - 4\mu + \eta) \lambda_2^2 + 2 (16\lambda - 4\mu + \eta) \lambda_3^2) \sin (x) \\
+ 2 (\lambda - \mu + \eta) \lambda_1 \lambda_2) \cos (x) \\
- 2 (\lambda - \mu + \eta) \lambda_1 \lambda_3 \sin (x) - 2 (16\lambda - 4\mu + \eta) \lambda_2 \lambda_3.
\]

Now, by considering \(16\lambda - 4\mu + \eta = 0 \), we find
\[
\Xi (E) = 2 (\lambda - \mu + \eta) \lambda_1 \lambda_3 \cos (x) - 2 (\lambda - \mu + \eta) \lambda_1 \lambda_2 \sin (x),
\]
which recommends the solution of Eq. (4.1) can be written as
\[
u (x,t) = \lambda_1 (t) + \lambda_2 (t) \cos (x) + \lambda_3 (t) \sin (x).
\] (4.2)
By inserting (4.2) in (4.1) and through some operations, we find
\[t^T(λ_1(t)) = 0, \]
\[t^T(λ_2(t)) = γλ_1(t)λ_3(t), \]
\[t^T(λ_3(t)) = −γλ_1(t)λ_2(t), \]
in which \(γ = 2(λ − μ + η). \) Solving the equation \(t^T(λ_1(t)) = 0 \) results in \(λ_1(t) = d_0 \) and thus
\[t^T(λ_2(t)) = γd_0λ_3(t), \]
\[t^T(λ_3(t)) = −γd_0λ_2(t) \]
(4.3)

By differentiating the first equation, we acquire
\[t^T(t^T(λ_2(t))) = γd_0^2λ_3(t). \]

Now, it is obvious that above equation can be presented as
\[t^T(t^T(λ_2(t))) = γd_0^2λ_3(t). \]

Using the CFST, yields
\[S_α \left [t^T(t^T(λ_2(t))) ; u \right] = −γ^2d_0^2S_α [λ_3(t); u], \]
and therefore
\[\frac{S_α [tT_α(λ_2(t)) ; u]}{u^α} \left / c \right. = \frac{tT_α(λ_2(0))}{u^α} = −γ^2d_0^2S_α [λ_2(t); u], \]
where \(tT_α(λ_2(0)) = γd_0d_2(λ_3(0) = d_2). \) In a similar manner, the equation
\[\frac{S_α \left [tT_α(λ_2(t)) ; u \right]}{u^α} = \frac{γd_0d_2}{u^α} − γ^2d_0^2S_α [λ_2(t); u], \]
can be written as
\[S_α [λ_2(t); u] = \frac{γd_0^2}{u^α} = \frac{γd_0^2}{u^α} − γ^2d_0^2S_α [λ_2(t); u]. \]

It is clear that
\[S_α [λ_2(t); u] = \frac{γd_0^2}{u^α} + \frac{d_1}{1 + (γd_0u^α)^2}. \]

Now, by means of the inverse CFST, we retrieve
\[λ_2(t) = d_1\cos \left (γd_0\frac{t^α}{α} \right) + d_2\sin \left (γd_0\frac{t^α}{α} \right). \]

(4.4)

Setting (4.4) in (4.3) leads to
\[tT_α(λ_3(t)) = −γd_0 \left (d_1\cos \left (γd_0\frac{t^α}{α} \right) + d_2\sin \left (γd_0\frac{t^α}{α} \right) \right). \]

Using the CFST, results in
\[S_α \left [tT_α(λ_3(t)) ; u \right] = −γd_0S_α \left [d_1\cos \left (γd_0\frac{t^α}{α} \right) + d_2\sin \left (γd_0\frac{t^α}{α} \right) ; u \right], \]
and consequently
\[
S_\alpha [\lambda_3(t); u] - \lambda_3(0) \frac{1}{d_2} u^\alpha \frac{\gamma d_0 d_1}{1 + (\gamma d_0 u^\alpha)^2} = -\frac{\gamma^2 d_0^2 d_1^2 u^\alpha}{1 + (\gamma d_0 u^\alpha)^2}.
\]

It is obvious that
\[
S_\alpha [\lambda_3(t); u] = -\frac{\gamma d_0 d_1 u^\alpha}{1 + (\gamma d_0 u^\alpha)^2} + \frac{d_2}{1 + (\gamma d_0 u^\alpha)^2}.
\]

Now, by means of the inverse CFST, we gain
\[
\lambda_3(t) = -d_1 \sin \left(\gamma d_0 t^\frac{\alpha}{\alpha} \right) + d_2 \cos \left(\gamma d_0 t^\frac{\alpha}{\alpha} \right).
\]

Hence, the following exact solution to the nonlinear conformable time-fractional dispersive equation of the fifth-order is acquired
\[
u(x, t) = d_0 + \left(d_1 \cos \left(\gamma d_0 t^\frac{\alpha}{\alpha} \right) + d_2 \sin \left(\gamma d_0 t^\frac{\alpha}{\alpha} \right) \right) \cos x
\]
\[+ \left(-d_1 \sin \left(\gamma d_0 t^\frac{\alpha}{\alpha} \right) + d_2 \cos \left(\gamma d_0 t^\frac{\alpha}{\alpha} \right) \right) \sin x,
\]

which is the corrected form of the solution reported in [18].

The new exact solution derived through the present hybrid scheme has been plotted for different values of \(\alpha \) in the Figure 1.
Note: Although there is another kind of exact solutions to a wide range of (2 + 1)-dimensional differential equations called the lump solutions [13, 36, 37], it should be mentioned that extracting such solutions to (2+1)-dimensional fractional differential equations through the presented method is not applicable.

5. Conclusion

A nonlinear time-fractional dispersive equation of the fifth-order with the conformable derivative was analytically solved in the current work. The invariant subspace method along with the fractional Sumudu’s transform in the conformable context has been applied for the first time successfully to handle the intended aim. The present study reveals that the current hybrid method provides a new and effective systematic technique to deal with the conformable time-fractional differential equations in mathematical physics. It is worth noting that the validity of the reported result was checked by substituting it into the Eq. (4.1).

References

(1993), 35–43.
