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Abstract In this paper, we use the three critical points theorem attributed to B. Ricceri in

order to establish existence of three distinct solutions for the following boundary
value problem: 

∆pu = a(x)|u|p−2u in Ω,

|∇u|p−2∇u.ν = λf(x, u) on ∂Ω.
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1. Introduction

For p > 1 and λ ≥ 0, consider the following boundary value problem: ∆pu = a(x)|u|p−2u in Ω,

|∇u|p−2∇u.ν = λf(x, u) on ∂Ω,
(1.1)

where ∆pu = div(|∇u|p−2∇u) is the usual p-Laplacian operator. Our general assump-
tions are that Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary ∂Ω, and
ν is the unit outer normal on ∂Ω. In addition, we assume, a(x) ∈ C(Ω) is a positive
function and f : ∂Ω× R→ R is continuous. Problem (1.1) is used to model physical
phenomena related to non-Newtonian fluids, flow through porous media, nonlinear
elasticity, glaciology, see for example [2], [3], [4] and [6].

In this note we intend to use a three critical points theorem attributed to Ricceri
to show that under certain conditions problem (1.1) has three solutions in W 1,p(Ω).
This theorem has already been used by other authors to address similar goal. For
example see [8], [9] and [12].
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2. Preliminaries

We begin by recalling that u ∈ W 1,p(Ω) is a weak solution for (1.1) whenever the
following integral equation holds:∫

Ω

(|∇u|p−2∇u∇ϕ+ a(x)|u|p−2uϕ) dx = λ

∫
∂Ω

f(x, u)ϕ dσ, (2.1)

for all ϕ ∈W 1,p(Ω).
We prefer to use another norm in W 1,p(Ω) which is defined as follows:

‖u‖ =

(∫
Ω

(|∇u|p + a(x)|u|p) dx
) 1
p

. (2.2)

This norm is equivalent to the usual norm in W 1,p(Ω), see [7, Corollary 2.3]. Hence-
forth, ‖u‖p and |u|p denote the norm of u in Lp(Ω) and Lp(∂Ω), respectively.

As mentioned earlier our main tool is a three critical points theorem attributed to
Ricceri, see [10, 11]. A simplified version of Ricceri’s work appears in [5, Theorem
2.1], and that is what we need for problem (1). Here is [5, Theorem 2.1] reformulated
incorporating the new norm (2.2):

Theorem 2.1. Let J : W 1,p(Ω) → R be a continuously Gâteaux differentiable func-
tional such that J(0) = 0. We also assume:

(i) There exist u1 ∈W 1,p(Ω) and r > 0 such that

‖u1‖p > rp and sup
‖u‖< p

√
rp

< rp
J(u1)

‖u1‖p
.

(ii) J is sequentially weakly upper semicontinuous.
(iii) For some b > 0 and for each λ ∈ [0, b]:

lim
‖u‖→+∞

(‖u‖p − λJ(u)) = +∞.

(iv) The functional 1
p‖.‖

p−λJ(.) satisfies the Palais-Smale condition on W 1,p(Ω).

Then, there exists an open interval Λ ⊆ [0, b] and a positive real number ρ, such that
for each λ ∈ Λ, the equation

∂

∂u

(
1

p
‖u‖p − λJ(u)

)
= 0

admits at least three solutions in W 1,p(Ω) whose norms are less than ρ.

3. Main result

Weak solutions of (1.1) are exactly the critical points of the functional

Eλ(u) :=
1

p
‖u‖p − λ

∫
∂Ω

F (x, u) dσ,

where F (x, u) =
∫ u

0
f(x, t) dt. Let’s define J(u) :=

∫
∂Ω
F (x, u) dσ, for u ∈W 1,p(Ω).

Now we are ready to state our main result.

Theorem 3.1. Let f : ∂Ω × R → R be a continuous function which satisfies the
following conditions:
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(A1) For some A > 0 and 1 < q < p, |f(x, t)| ≤ A(1 + |t|q−1), ∀t ∈ R and a.e
x ∈ ∂Ω.

(A2) there is γ > p such that:

lim sup
ξ→0

[
1

|ξ|γ
sup
x∈∂Ω

∫ ξ

0

f(x, t)dt

]
< +∞;

(A3) there exists w ∈W 1,p(Ω) such that
∫
∂Ω

∫ w(x)

0
f(x, t) dt dσ > 0.

Then, for every α > 0, there exist an open interval Λ ⊂ [0, α] and ρ > 0 such that for
each λ ∈ Λ, problem (1.1) has at least three weak solutions in W 1,p(Ω) whose norms
are less than ρ.

Proof. From (A1) we infer∣∣∣∣∫
∂Ω

F (x, u) dσ

∣∣∣∣ ≤ A

∫
∂Ω

|u| dσ +
A

q

∫
∂Ω

|u|q dσ

≤ c1(|u|q + |u|qq),

for some c1 > 0. By the trace imbedding W 1,q(Ω)→ Lq(∂Ω), see [1], we have∣∣∣∣∫
∂Ω

F (x, u) dσ

∣∣∣∣ ≤ c2(‖u‖+ ‖u‖q). (3.1)

From (3.1) we obtain

‖u‖p − λJ(u) ≥ ‖u‖p − λc2(‖u‖+ ‖u‖q),
thus

lim
‖u‖→+∞

(‖u‖p − λJ(u)) = +∞, (3.2)

since p > q > 1. Now we show that Eλ satisfies the Palais-Smale condition. Let {un}
be a sequence in W 1,p(Ω) such that

Eλ(un)→ β, and E ′λ(un)→ 0, (3.3)

as n→∞. From (3.2) and (3.3) we infer that {un} is a bounded sequence in W 1,p(Ω).
Whence, there exists a subsequence of {un}, still denoted {un}, and v ∈W 1,p(Ω) such
that un ⇀ v in W 1,p(Ω). Now by the compact imbeddings W 1,p(Ω) → Lp(Ω) and
W 1,p(Ω)→ Ls(∂Ω), for all 1 < s ≤ p, we deduce

un → v in Lp(Ω), (3.4)

un → v in Ls(∂Ω), (3.5)

un(x)→ v(x) a.e. on ∂Ω. (3.6)

From (3.3) and (3.4) we derive

〈E ′λ(un)− E ′λ(v), un − v〉 → 0, (3.7)

as n→∞. Here 〈·, ·〉 denotes the usual pairing between W−1,p′(Ω) and W 1,p(Ω). It
is readily seen that (3.4), (3.5) and (3.7) yield∫

Ω

[
|∇un|p−2∇un − |∇v|p−2∇v

]
.∇(un − v)dx→ 0, (3.8)
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as n→∞. At this stage we recall the following formula, see [13],

(|A|p−2A− |B|p−2B,A−B) ≥

{
C |A−B|p if p ≥ 2,

C |A−B|2
(|A|+|B|)2−p if p ≤ 2,

(3.9)

where A and B denote vectors in Rn, and (., .) the usual dot product. First, we
assume p ≥ 2. By (3.9) we have∫

Ω

|∇un−∇v|p dx ≤ C

∫
Ω

[
|∇un|p−2∇un − |∇v|p−2∇v

]
.∇(un−v)dx. (3.10)

Therefore, (3.8) implies

lim
n→∞

∫
Ω

|∇un −∇v|p dx = 0.

Next, we assume p ≤ 2. Let us observe that∫
Ω

|∇un −∇v|pdx (3.11)

≤
(∫

Ω

|∇(un − v)|2

(|∇un|+ |∇v|)2−p dx

) p
2
(∫

Ω

(|∇un|+ |∇v|)pdx
) 2−p

2

.

Applying (3.9) to the first integral on the right hand side of (3.11), yields∫
Ω

|∇un −∇v|pdx ≤ C

{∫
Ω

[
|∇un|p−2∇un − |∇v|p−2∇v

]
.∇(un − v)dx

} p
2

×
{∫

Ω

(|∇un|+ |∇v|)pdx
} 2−p

2

.

Thus, by (3.8) we derive

lim
n→∞

∫
Ω

|∇un −∇v|p dx = 0.

Therefore un → v in W 1,p(Ω). So, Eλ satisfies the Palais-Smale condition.
From (A2), there exist η > 0 and M > 0 such that

F (x, ξ)

|ξ|γ
≤M, (3.12)

for 0 < |ξ| < η, x ∈ ∂Ω. Assume ‖u‖ ≤ p
√
pr < η, whence from (3.1) and (3.12) we

deduce

−C(‖u‖+ ‖u‖q) ≤ J(u) ≤ C‖u‖γ , for some C > 0. (3.13)

Thus

0 ≤ sup
‖u‖≤ p

√
pr

J(u) ≤ C(pr)
γ
p ,

hence

lim
r→0+

1

r
sup

‖u‖≤ p
√
pr

J(u) = 0.
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By (A3) we deduce that w is not identically zero. If 0 < ε < p J(w)
‖w‖p , then there exists

r ∈
(

0, ‖w‖
p

p

)
such that

sup
‖u‖≤ p

√
pr

J(u) < rε < rp
J(w)

‖w‖p
.

Now from Theorem 2.1 , with u1 = w, we deduce our conclusion. �

Remark 3.2. Here is an example of a function f that satisfies the conditions (A1)-
A(3) of theorem 3.1;

f(x, t) =

{
|t|γ−1 |t| < 1,
|t|q−1 |t| ≥ 1,

where 1 < q < p < γ.

4. Conclusion

In this paper, we used the three critical points theorem to prove the existence of
three distinct solutions for an important clas of boundary value problems associate
with p-Laplacian equation. This theorem has already been used by other authors to
address similar goal. Recently, many authors apply the Ricceri’s theorem to prove
the existence of solutions for singular elliptic boundary value problems.
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