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Abstract In this research article, Modified Hermite wavelets based numerical method is devel-

oped for the solution of singular initial and boundary value problems. In the present
work we transform the differential equations associated with initial and boundary
conditions into system of algebraic equations by expanding the unknown function as
a series of Hermite wavelets with unknown coefficients. We solve obtained system

of equations using Newton’s iterative method through Matlab. Illustrative exam-
ples are considered to demonstrate the applicability and accuracy of the proposed
technique. Obtained results are compared favorably with the exact solutions. Also,
we proved the theorem reveals that, when exact solution can be obtained by the

proposed method and theorems regarding convergence and error analysis.
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1. Introduction

To study the behavior of differential equations we need to find their exact solutions
by the classical techniques such as trigonometry, calculus etc. By these solutions one
can know the behavior of differential equation under the given different circumstances.
The techniques used for calculating the exact solution are known as analytical meth-
ods. But this works only for simple equations. That is, differential equations with
simple coefficients, for higher order differential equations with complex coefficients
becomes very difficult to find exact solution. Therefore, we need numerical methods
to solve such equations. Singular initial and boundary value problems for ordinary
differential equations arises in many fields such as gas dynamics, atomic structures,
chemical reactions and nuclear physics [11]. In many cases, extracting the analytical
solutions for singular initial and boundrary value problems from analytical methods is
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not possible, in such cases collocation method is one of the most widely used numer-
ical schemes to solve differential equations, though wavelet based collocation method
will give high precision numerical solution [18, 19, 20, 27].
Wavelets are localized waves or small wave. Instead of oscillating forever, they drop to
zero. Wavelets theory is a newly emerging area in mathematical research field. It has
been applied in engineering disciplines such as, signal analysis for wave form represen-
tation and segmentations, time frequency analysis, harmonic analysis etc. Wavelets
permit the accurate representation of a variety of functions and operators. Wavelets
are assumed as basis functions ψi,j(x) in continuous time. Basis is a set of func-
tions which are linearly independent and these linearly independent functions can be
used to produce all admissible functions say f(t). It is represented in wavelet space as
f(t) =

∑
i,j ai,jψi,j(x). Special feature of the wavelet basis is that all functions ψi,j(x)

are constructed from a single function called mother wavelet ψ(x) which is a small
pulse. Usually set of linearly independent functions (basis) created by translation and
dilation of mother wavelet.
Different methods were developed for the solution of singular initial and bound-
ary value problems. Such as, Hermites wavelets method [2, 25], New ultraspherical
wavelet collocation method [5], Differential transformation method [6], Wavelet anal-
ysis method [14], An efficient wavelet based spectral method [16], Wavelet Galerkin
method [17], Haar wavelet collocation method [19, 20], Laguerre wavelet method [22],
Legendre wavelet method [26], Adomian decomposition method [27], Lagurre wavelets
mathod [30]. There are two different approaches for solving differential equations, one
approach is based on converting differential equations into integral equations then
eliminate the integral operator by operational matrix of integration [26, 29]. Another
method is based on the operational matrix of derivative. Here, we solve the differ-
ential equations by converting into system of linear or nonlinear algebraic equations
through either operational matrix of derivative method [14, 16, 30]or series approxi-
mation method [2, 5, 8, 9, 10, 23, 25].
In this paper, our effort is to bring the solutions of singular initial and boundary
value problems under the Hermite space (The space generated by Hermite wavelet
basis). But present method will give exact solutions of all second order linear singular
problems, which are in the polynomial form of degree n for different conditions, hence
we are concentrating to solve problems whose solutions are not in polynomial form
of finite degree. i.e. we are expressing the solutions of singular initial and boundary
value problems in terms of Hermite wavelet basis.
Let (a, b) ⊂ R be an interval and p(x), q(x), r(x, y) : (a, b) → R be continuous real val-
ued functions. Throughout this paper we consider the singular second order equations
given by

y′′(x) + p(x)y′(x) + q(x)y(x) = r(x, y), a < x < b, (1.1)

subjected to following initial and boundary conditions:

Type I : y(a) = α1, y(b) = β1,

Type II : y′(a) = α2, y(b) = β2,

Type III : y(a) = α3, y
′(b) = β3,
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Type IV : a1y(a) + a2y
′(a) = α4, b1y(b) + b2y

′(b) = β4,

Type V : y(a) = α5, y
′(a) = β5

where ai, bi, i = 1, 2. αj , βj , j = 1, 2, 3, 4, 5 are known constants. In the proposed
method, unknown function appearing in the differential equations is replaced by series
expansions of polynomial basis of Hermite wavelets. After collocating the equation by
suitable collocation points with the given conditions, we obtain a system of linear or
nonlinear equations which can be solved using iterative methods to get the unknown
coefficients. Hence the required solution is obtained by substituting these unknown
coefficients in the unknown function.
The rest of this paper is organized as follows. In section 2 properties of Hermite
wavelet is discussed. Section 3 presents function approximation and theorem on ex-
act solution. Section 4 reveals that method of solution. In section 5 the numerical
examples to test the efficiency of the proposed method. Results discussion and con-
clusion is drawn in section 6.

2. Hermite Wavelets

Wavelets constitute a family of functions constructed from dilation and translation
of a single function called mother wavelet. When the dilation parameter a and trans-
lation parameter b varies continuously, we have the following family of continuous
wavelets:

ψa,b(x) = |a|
−1
2 ψ(

x− b

a
),∀ a, b ∈ R, a ̸= 0.

If we restrict the parameters a and b to discrete values as a = a−k
0 , b = nb0a

−k
0 , a0 >

1, b0 > 0. We have the following family of discrete wavelets

ψk,n (x) = |a|1/2ψ(ak0x− nb0),∀a, b ∈ R, a ̸= 0,

where ψk,n form a wavelet basis for L2(R). In particular, when a0 = 2 and b0 = 1,then
ψk,n (x) forms an orthonormal basis. Hermite wavelets are defined as [2]

ψn,m(x) =

{
2
k+1
2√
π
Hm(2kx− 2n+ 1) n−1

2k−1 ≤ x < n
2k−1

0, otherwise
(2.1)

where m = 0, 1, . . . ,M − 1. Here Hm(x) is Hermite polynomials of degree m with

respect to weight function W (x) =
√
1− x2 on the real line R and satisfies the

following reccurence formula H0(x) = 1, H1(x) = 2x,

Hm+2(x) = 2xHm+1(x)− 2(m+ 1)Hm(x) (2.2)

where m = 0, 1, 2, . . ..

3. Function Approximation and Convergence Analysis

We would like to bring a solution function y(x) under Hermite space by approxi-
mating the y(x) by elements of Hermite wavelet basis as follows:
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y(x) =
∞∑

n=1

∞∑
m=0

Cn,mψn,m (x), (3.1)

where ψn,m (x) is given in Eq. (2.1).
We approximate y(x) by truncating the series represented in Eq. (3.1) as,

y(x) ≈
2k−1∑
n=1

M−1∑
m=0

Cn,m ψn,m (x) = CTψ(x), (3.2)

where C and ψ(x) are 2k−1M × 1 matrix,

CT = [C1,0, . . . , C1,M−1, C2,0, . . . , C2,M−1, . . . , C2k−1,0, . . . , C2k−1,M−1], (3.3)

ψ(x) = [ψ1,0, . . . , ψ1,M−1, ψ2,0, . . . , ψ2,M−1, . . . , ψ2k−1,0, . . . , ψ2k−1,M−1]
T .

(3.4)

Theorem 3.1. Let Rn is polynomial space of degree n+1 over field R and y : [a, b] →
Rn be the solution of arbitrary linear second order linear differential equation then the
solution for such differential equation by present method is exact.

Proof. Let Rn is polynomial space of degree n + 1 over the field R and y(x)
be the solution of arbitrary second order differential equation of degree at most n.
If the y(x) be any polynomial of degree n with real coefficients, then there exist a
subset S = {ψi,0, ψi,1, ..., ψi,n}of basis of n + 1 dimensional Hermite space (space
generated by basis of Hermite wavelets), where ψi,0, ψi,1, ..., ψi,n are polynomials of
degree 0, 1, 2, ..., n respectively. Let,

y(x) =
∑n

j=0 ai,jψi,j(x) for a fixed i,

which is a linear combination of elements of Hermite wavelet basis. By equating the
coefficients of same degree x on both side, we get values of ai,j . Hence y(x) is ap-
proximated exactly as a linear combination of basis elements of Hermite wavelets.

Theorem 3.2. A bounded continuous function y(x) in H2[0, 1) defined on [0, 1) then
the Hermite wavelets expansion of y(x) converges to it [21].

Proof. Let y(x) a bounded real valued function on [0, 1) and y(x) is approximated
as follows, y(x) =

∑
Cn,mψn,m(x) where, n,m are defined in section 2. Then Hermite

wavelet coefficients of continuous function y(x) is defined as (<,> represents inner
product),

Cn,m =< y(x), ψn,m(x) >,

Cn,m =
∫ 1

0
y(x)ψn,m(x)dx,

Cn,m =
∫
I
y(x) 2

k+1
2√
π
Hm(2kx− 2n+ 1)dx,

where, I = [ n−1
2k−1 ,

n
2k−1 ] and put 2kx− 2n+ 1 = z.

We obtain:



CMDE Vol. 7, No. 2, 2019, pp. 177-198 181

Cn,m = 2
k+1
2√
π

∫ 1

−1
y( z−1+2n

2k
)Hm(z)2−kdz,

Cn,m = 2
−k+1

2√
π

∫ 1

−1
y( z−1+2n

2k
)Hm(z)dz,

Using generalized mean value theorem for integrals,

Cn,m = 2
−k+1

2√
π
y(w−1+2n

2k
)
∫ 1

−1
Hm(z)dz,

for some w ∈ (−1, 1) and Hm(z) is bounded in the given interval hence put∫ 1

−1

Hm(z)dz = h,

|cn,m| = |2
−k+1

2√
π

||y(w−1+2n
2k

)|h.
Since y is bounded. Therefore

∑∞
n,m=0 Cn,m is absolutely convergent. Hence the

Hermite series expansion of y(x)convergence uniformly.

Theorem 3.3. Suppose y ∈ Cp[0, 1) is an p times continuously differentiable function

such that y =
∑2k−1

n=1 yn(x) and {ψn,m} be a sequence of Hermite wavelets, where
n = 1, ...2k−1 and m = 0, ...M − 1, k is any positive integer. Let Yn = L({ψn,m})
be the linear space spanned by {ψn,m}. If CT

nHn(x) is best approximation to yn
from Yn then CTH(x) approximates y with following error bound ||y − CTH(x)||2 ≤

K√
(2p+1)2(k−1)(p+1

2
)
, where K = max yp(ζ) ∀ζ ∈ [ n−1

2k−1 ,
n

2k−1 ).

Proof. The Taylor expansion for the function yn(x) is

ȳn(x) = yn(
n−1
2k−1 ) + y

′

n(
n−1
2k−1 )

(x− n−1

2k−1 )

1! + ...+ yp−1
n ( n−1

2k−1 )
(x− n−1

2k−1 )p−1

(p−1)! .

For which it is known that

|yn(x)− ȳn(x)| ≤ |ypn(ζ)|
(x− n−1

2k−1 )p

(p)! .

where ζ ∈ [ n−1
2k−1 ,

n
2k−1 ]. Since C

T
nHn(x) is the best approximation of yn from Yn and

ȳn ∈ Yn.

||yn − CT
nHn(x)||22 ≤ ||yn − ȳn||22,

||yn − CT
nHn(x)||22 =

∫ n

2k−1

n−1

2k−1

|yn − ȳn|2dx,

||yn − CT
nHn(x)||22 ≤

∫ n

2k−1

n−1

2k−1

(|ypn(ζ)|
(x− n−1

2k−1 )
p

(p)!
)2dx,

||yn − CT
nHn(x)||22 = (

yp(ζ)

p!
)2

1

(2p+ 1)2(k−1)(2p+1)
,

put K = yp(ζ)
p! .

Now,

||y − CTH(x)||22 ≤
2k−1∑
n−1

||yn − CT
nHn(x)||22,
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||y − CTH(x)||22 ≤ K2

(2p+ 1)2(k−1)(2p+1)
,

||y − CTH(x)||2 ≤ K
√
2p− 12(k−1)(p+ 1

2 )
.

4. Method of solution

Solution of Eq. (1.1) can be expanded using basis elements of Hermite wavelets as
follows:

y(x) =
∞∑

n=1

∞∑
m=0

Cn,mψn,m(x),

where ψn,m(x) is given in Eq. (2.1). We approximate y(x) by truncated series as,

y(x) ≈
2k−1∑
n=1

M−1∑
m=0

Cn,mψn,m(x) = CTψ(x),

where C and ψ(x) are 2k−1M × 1 matrix,

CT = [C1,0, . . . , C1,M−1, C2,0, . . . , C2,M−1, . . . , C2k−1,0, . . . , C2k−1,M−1],

ψ(x) = [ψ1,0, . . . , ψ1,M−1, ψ2,0, . . . , ψ2,M−1, . . . , ψ2k−1,0, . . . , ψ2k−1,M−1]
T .

Then 2k−1M number of conditions required to determine 2k−1M number of coeffi-
cients such as,

C1,0, . . . , C1,M−1, C2,0, . . . , C2,M−1, . . . , C2k−1,0, . . . , C2k−1,M−1.

Since two conditions are furnished by the initial or boundary conditions discussed
in the section 1, we see that there should be 2k−1M − 2 extra conditions to recover
the unknown coefficients Cn,m substitute Eq. (3.2) in Eq. (1.1) we get,

d2

dx2

∑2k−1

n=1

∑M−1
m=0 Cn,mψn,m(x) + p(x) d

dx

∑2k−1

n=1

∑M−1
m=0 Cn,mψn,m(x)

+ q(x)
∑2k−1

n=1

∑M−1
m=0 Cn,mψn,m(x) = f(x,

∑2k−1

n=1

∑M−1
m=0 Cn,mψn,m(x)).

(4.1)

Now collocate the Eq. (4.1) by limit points of the following sequence to get 2k−1M−
2 number of equations,

xi = {1
2
(1 + cos

(i− 1)π

2k−1M − 1
)} where i = 2, 3, . . . , (4.2)

we get,

d2

dx2

∑2k−1

n=1

∑M−1
m=0 Cn,mψn,m(xi) + p(xi)

d
dx

∑2k−1

n=1

∑M−1
m=0 Cn,mψn,m(xi)

+ q(xi)
∑2k−1

n=1

∑M−1
m=0 Cn,mψn,m(xi) = f(xi,

∑2k−1

n=1

∑M−1
m=0 Cn,mψn,m(xi)).

(4.3)
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From the given initial or boundary conditions and Eq. (4.3), we obtain 2k−1M
number of linear or nonlinear system of equations, by solving these equations, we get
2k−1M unknown coefficients values, substituting these unknown coefficients values in
Eq. (3.2), we get solution of Eq. (1.1).

5. Numerical Examples

Example 5.1. Lot and Mahdiani [13] used wavelet Galerkin method to solve bound-
ary value problem with Dirichlet homogeneous boundary condition,

y′′(x)− π2y(x) = −2π2sin(πx), 0 < x < 1, (5.1)

subjected to the boundary conditions y(1) = 0 = y(0), the exact solution is y(x) =
sin(πx). We solved Eq. (5.1) by the present method at k = 1 and M = 5. Figure 1
represents graphical interpretation of obtained numerical solution of above equation
with exact solution y(x) = sin(πx) and Table 1 represents the comparison between
the absolute error (AE) of approximate solution, analytical solution and other existing
methods.
Method of implementation for Example 5.1 at k = 1 and M = 5:
We approximate y(x) by truncated series as,

y1,5(x) ≈
4∑

m=0

C1,mψ1,m(x) = CTψ(x), (5.2)

where C and ψ(x) are row vectors with appropriate dimensions,
CT = [C1,0, C1,1, C1,2, C1,3, C1,4] and ψ(x) = [ψ1,0, ψ1,1, ψ1,2, ψ1,3, ψ1,4]

T respec-
tively. Then we need five equations to find five unknowns, C1,0, C1,1, C1,2, C1,3, C1,4.
Since two conditions are furnished by the given boundary conditions, we see that,
there should be three extra conditions to recover the unknown coefficients Cn,m.
These conditions can be obtained by substituting Eq. (5.2) in Eq. (5.1) we get:

d2

dx2

4∑
m=0

C1,mψ1,m(x)− π2
4∑

m=0

C1,mψ1,m(x) + 2π2sin(πx) = 0, (5.3)

Now collocate Eq. (5.3) by limit points of the following sequence to get three equations
other than equations obtained by given boundary conditions,

{xi} = {1
2
(1 + cos

(i− 1)π

4
)} where i = 2, 3, . . . ,

we get,

d2

dx2

4∑
m=0

C1,mψ1,m(xi)− π2
4∑

m=0

C1,mψ1,m(xi) + 2π2sin(πxi) = 0, (5.4)

from the given boundary conditions and Eq. (5.4) we obtain a system with five linear
equations as follows,

1.1284 C1,0 + 2.2568C1,1 + 2.2568C1,2 + 2.2568C1,3 + 2.2568C1,4 = 0,

1.1284 C1,0−2.2568C1,1 + 2.2568C1,2−2.2568C1,3 + 2.2568C1,4 = 0,

−11.13 C1,0−15.74C1,1 + 36.10C1,2 + 168.94C1,3 + 311.13C1,4 = −8.7645,
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Table 1. Comparison of the absolute error (AE) of HWM (present
method at k = 1, M = 10), wavelet Galerkin method by Coiflet
[13] and Legendre wavelet Galerkin method (LWGM) [24] with exact
solution for the Example 5.1.

x Exact solution AE in [13] AE in [24] AE by HWM
0.1 0.30913725197 1.5199× 10−4 3.5999× 10−8 5.1200× 10−8

0.2 0.58798983215 2.5825× 10−4 3.9999× 10−8 1.4719× 10−8

0.3 0.80923991060 2.8099× 10−4 6.0000× 10−10 2.6366× 10−8

0.4 0.95121269410 1.9751× 10−4 1.0999× 10−9 2.7786× 10−8

0.5 0.99999980013 4.0000× 10−4 5.8999× 10−8 2.6863× 10−8

0.6 0.95082179339 2.9448× 10−4 1.9200× 10−8 2.7786× 10−8

0.7 0.80849640381 5.4005× 10−3 3.7499× 10−8 2.6366× 10−8

0.8 0.58696655704 1.0297× 10−3 3.1899× 10−8 1.4719× 10−8

0.9 0.30793445381 1.3620× 10−3 5.8000× 10−9 5.1200× 10−8

−11.1367 C1,0 + 0C1,1 + 58.3814C1,2 + 0C1,3−166.7058C1,4 = −19.7392,

−11.13 C1,0 + 15.74C1,1 + 36.10C1,2−168.94C1,3 + 311.13C1,4 = −8.7645,

by solving these equations, we get five unknown coefficients values as, C1,0 = 0.4191,
C1,1 = 0, C1,2 = −0.2222, C1,3 = 0, C1,4 = 0.0126. substituting these unknown
coefficients values in Eq. (5.2), we get approximate solution of Eq. (5.1) as,

y(x) = 3.6432x4−7.2864x3 + 0.5433x2 + 3.0999x.

Figure 1. Physical interpretation of HWM solution with exact so-
lution for Example 5.1 at k = 1 and M = 10.
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Example 5.2. Consider the singular boundary value problem [14];

y′′(x) + |4x− 1|y′ − 32 = 8|4x− 1|(4x− 1), 0 < x < 1,

subjected to the boundary conditions, y(0) = 1, y(1) = 9. the exact solution is
y(x) = (4x − 1)2, by applying the technique described in section 4 at M = 5 and
k = 1, we have a linear system of five equations. solving this system we obtain
c0 = 2.65868077, c1 = 1.77245385, c2 = 8.86226925, c3 = 0, c4 = 0. Thus the
corresponding solution is y(x) = CTψ(x) = (4x− 1)2.
Example 5.3. Consider the following nonlinear boundary value problem [17];

y′′(x) + (1 +
r

x
)y′(x) =

5x3(5x5ey − x− r − 4)

4 + x5
, (5.5)

subjected to the boundary conditions, y(1)+ 5y′(1) = ln(15 )− 5, y′(0) = 0, the exact

solution is y(x) = ln( 1
4+x5 ). We solve this equation by the present method with k = 1

and M = 10. Table 2 represents absolute error obtained by the approximate solution
with analytical solution for different values of r. The numerical solution of Eq. (5.5)
is presented in the Figure 2 at k = 1 andM = 10 with the exact solution and Figure 3
represents absolute error obtained by present method with exact solution for r=0.25
and 0.75. This shows that, as decreasing the values of r we get more accuracy.
Method of implementation for k = 1, M = 10 and r = 0.25:
We approximate y(x) by truncated series as,

y1,9(x) ≈
9∑

m=0

C1,mψ1,m(x) = CTψ(x), (5.6)

where C and ψ(x) are 10× 1 matrix,

CT = [C1,0, C1,1, C1,2, C1,3, C1,4, C1,5, C1,6, C1,7, C1,8, C1,9],

ψ(x) = [ψ1,0, ψ1,1, ψ1,2, ψ1,3, ψ1,4, ψ1,5, ψ1,6, ψ1,7, ψ1,8, ψ1,9]
T ,

Then we need ten equations to find ten unknowns,

C1,0, C1,1, C1,2, C1,3, C1,4, C1,5, C1,6, C1,7, C1,8, C1,9.

Since two conditions are furnished by the given boundary conditions, we see that there
should be eight extra conditions to recover the unknown coefficients Cn,m. These
conditions can be obtained by substituting Eq. (5.6) in Eq. (5.5), we get,

d2

dx2

∑9
m=0 C1,mψ1,m(x) + (1 + r

x )
d
dx

∑9
m=0 C1,mψ1,m(x)

= 5x3(5x5e(
∑9
m=0 C1,mψ1,m(x))−x−r−4)

4+x5 .

(5.7)

Now collocate Eq. (5.7) by limit points of the following sequence to get eight equations
other than equations obtained by given boundary conditions,

{xi} = {1
2
(1 + cos

(i− 1)π

9
)} where i = 2, 3, . . . ,
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we get

d2

dx2

∑9
m=0 C1,mψ1,m(xi) + (1 + r

xi
) d
dx

∑9
m=0 C1,mψ1,m(xi)

=
5x3
i (5x

5
i e

(
∑9
m=0 C1,mψ1,m(xi))−xi−r−4)

4+x5
i

,

(5.8)

from the given boundary conditions and Eq. (5.8), we obtain nonlinear system having
ten equations as follows,

0C1,0 + 4.5135C1,1−18.0541C1,2 + 40.6217C1,3−72.2163C1,4 + 112.8379C1,5

−162.4866C1,6 + 221.1623C1,7−288.8651C1,8 + 365.5949C1,9 = 0,

1.1284C1,0+24.82C1,1+92.52C1,2+205.36C1,3+363.33C1,4+566.44C1,5+814.68C1,6+
1.11× 103C1,7 + 1.4466× 103C1,8 + 1.8302× 103C1,9 = −6.6094,

0C1,0+5.6770C1,1+57.4466C1,2+246.7071C1,3+686.1751C1,4+1.4607×103C1,5+
2.5770×103C1,6+3.9253×103C1,7+5.2665×103C1,8+6.2507×103C1,9 = 4.0281ea1+
4.9009,

a1 = (1.1284C1,0+2.1207C1,1+1.7288C1,2+1.1284C1,3+0.3919C1,4−0.3919C1,5−
1.1284C1,6 − 1.7288C1,7 − 2.1207C1,8 − 2.2568C1,9),

0C1,0 + 5.7914C1,1 + 53.8539C1,2 + 189.3707C1,3 + 376.4325C1,4 + 453.3241C1,5 +
211.1524C1,6−427.5014C1,7−1.2514×103C1,8−1.7697×103C1,9 = 2.0368ea2 +3.8950,

a2 = 1.1284C1,0 +1.7288C1,1 +0.3919C1,2−1.1284C1,3−2.1207C1,4 +453.3241C1,5

+ 211.1524C1,6−427.5014C1,7 + 1.7288C1,8 + 2.2568C1,9,

0C1,0 + 6.0180C1,1 + 48.1442C1,2 + 108.3244C1,3 + 48.1442C1,4−210.6308C1,5

−433.2976C1,6−210.6308C1,7 + 481.4418C1,8 + 974.9196C1,9 = 0.5907ea3 + 2.4891,

a3 = (1.1284C1,0+1.1284C1,1−1.1284C1,2+−2.2568C1,3−1.1284C1,4+1.1284C1,5

+ 2.2568C1,6 + 1.1284C1,7−1.1284C1,8−2.2568C1,9),

0C1,0 + 6.4364C1,1 + 40.5788C1,2 + 20.6405C1,3−135.1057C1,4−151.9728C1,5 +
210.0267C1,6 + 408.9957C1,7−167.8620C1,8−753.9233C1,9 = 0.0864ea4 + 1.2009,

a4 = 1.1284C1,0 + 0.3919C1,1−2.1207C1,2−1.1284C1,3 + 1.7288C1,4 + 1.7288C1,5

−1.1284C1,6−2.1207C1,7 + 0.3919C1,8 + 2.2568C1,9,

0C1,0 + 7.2445C1,1 + 31.0762C1,2−56.7328C1,3−99.3874C1,4 + 196.6206C1,5

+ 137.8421C1,6−442.2549C1,7−58.4150C1,8 + 753.9233C1,9 = 0.0053ea5 + 0.4099,
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a5 = (1.1284C1,0−0.3919C1,1−2.1207C1,2+1.1284C1,3−99.3874C1,4+196.6206C1,5+
137.8421C1,6−442.2549C1,7−58.4150C1,8−2.2568C1,9,

0C1,0 + 9.0270C1,1 + 18.0541C1,2−108.3244C1,3 + 108.3244C1,4 + 135.4055C1,5

−433.2976C1,6 + 315.9462C1,7 + 361.0813C1,8−974.9196C1,9 = 9.5344 × 10−5ea6 +
0.0879,

a6 = 1.1284C1,0−1.1284C1,1−1.1284C1,2 + 2.2568C1,3−1.1284C1,4−1.1284C1,5 +
2.2568C1,6−1.1284C1,7−1.1284C1,8 + 2.2568C1,9,

0C1,0+14.1596C1,1−7.2794C1,2−108.7310C1,3+333.9697C1,4−506.4026C1,5+372.4317C1,6+
213.5346C1,7−1.0917× 103C1,8 + 1.7697× 103C1,9 = 2.1913× 10−7ea7 + 0.0087,

a7 = (1.1284C1,0−1.7288C1,1 + 0.3919C1,2 + 2.2568C1,3−2.1207C1,4 + 2.1207C1,5

−1.1284C1,6−0.3919C1,7 + 1.7288C1,8−2.2568C1,9),

0C1,0 + 41.9344C1,1−121.5138C1,2 + 114.9620C1,3 + 137.8086C1,4−775.2706C1,5 +
1.8536× 103C1,6−3.2989× 103C1,7 + 4.8856× 103C1,8−6.2507× 103C1,9 = 4.2717×
10−12ea8 + 1.4669× 10−4,

a8 = 1.1284C1,0−2.1207C1,1 + 0.3919C1,2 + 1.7288C1,3 + 0.3919C1,4 + 0.3919C1,5

−1.1284C1,6 + 1.7288C1,7−2.1207C1,8 + 2.2568C1,9,
by solving these equations, we get ten unknown coefficient values as follows,

C =



C1,0 = −1.278825133203009162044
C1,1 = −0.041537587059376624921
C1,2 = −0.023076219790389604586
C1,3 = −0.008002296976126222620
C1,4 = −0.001333852223188591342
C1,5 = 0.000089723734482221866
C1,6 = 0.000080988458831700973
C1,7 = 0.000012208468751971877
C1,8 = −0.000000727530333437623
C1,9 = −0.000000747415337829541


,

substituting these unknown coefficients values in the Eq. (5.6), we get approximate
solution of Eq. (5.5) as,
y(x) = −0.2211x9+0.9411 x8−1.4245x7+1.1208x6−0.7486x5+0.1243x4−0.0158x3+
0.0008x2−3.4976× 10−42 x− 1.3863.

Example 5.4. Consider the following nonlinear Lane-Emden equation [30];

y′′(x) + (
6

x
)y′(x) + 14y(x) + 4y(x)ln(y(x)) = 0, (5.9)

subjected to the boundary conditions

y(0) = 1, y(1) =
1

e
,
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Table 2. AE of the HWM solution (k = 1, M = 10) with exact
solution for the Example 5.3.

x Exact solution AE in HWM at r=.25 AE in HWM at r=.75.
0.1 -1.386296861116766 3.9995× 10−5 3.9936× 10−5

0.2 -1.386374357920061 4.0302× 10−5 4.0452× 10−5

0.3 -1.386901676666466 3.8897× 10−5 3.9245× 10−5

0.4 -1.388851089901581 3.9408× 10−5 4.0067× 10−5

0.5 -1.394076501561946 4.0281× 10−5 4.1077× 10−5

0.6 -1.405547818041777 3.8905× 10−5 3.9730× 10−5

0.7 -1.427453098935757 3.8339× 10−5 3.9319× 10−5

0.8 -1.465031601657275 3.9700× 10−5 4.0857× 10−5

0.9 -1.523986772187307 3.8995× 10−5 4.0162× 10−5

Figure 2. Graphical representation of HWM solution and exact so-
lution for Example 5.3 at k = 1, M = 10 and r = 0.25.
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the exact solution is y(x) = e−x2

. We solve this equation by the present method with
k = 1 and M = 10. The numerical solutions of Eq. (5.9) are presented and compared
with the exact solution and other existing method solutions in Table 3. Figure 4 rep-
resents the physical interpretation of approximate solution with analytical solution of
Eq. (5.9).

Example 5.5. Consider the scalar problem discussed in [1],

y′′(x) + (
2

x
)y′(x) = −n2 cos(nx)− 2

x
n sin(nx), (5.10)
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Figure 3. Graphical representation of absolute error obtained by
HWM solution with exact solution for Example 5.3 at k = 1,M = 10
for different values of r.
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Table 3. AE of HWM (at k = 1, M = 10) and Laguerre wavelet
method (LWM) [30] for different values of k and M with exact solu-
tion for the Example 5.4.

x Exact so-
lution

AE in [30] at
k=3, M=5

AE in [30] at
k=2, M=6

AE in HWM

0.1 0.99004983 4.1584× 10−7 3.9235× 10−8 5.7696× 10−9

0.2 0.96078943 4.1079× 10−7 3.5719× 10−8 1.7572× 10−8

0.3 0.91393118 1.3871× 10−7 3.4602× 10−8 4.4588× 10−8

0.4 0.85214378 2.0338× 10−8 2.8729× 10−8 9.2022× 10−10

0.5 0.77880078 5.2489× 10−8 2.8886× 10−8 1.1813× 10−8

0.6 0.69767632 4.2192× 10−8 2.7567× 10−8 3.9258× 10−8

0.7 0.61262639 3.3676× 10−8 1.5804× 10−8 2.9427× 10−8

0.8 0.52729242 2.0661× 10−8 9.9659× 10−9 2.4367× 10−8

0.9 0.44485806 7.6164× 10−9 1.0989× 10−8 2.0828× 10−8

subjected to the initial conditions,

y(0) = 2, y′(0) = 0,

the exact solution is y(x) = 1 + cos(nx). Singularity point of this problem is x = 0.
The Hermite wavelet method (HWM) is employed to solve it with different values
of M by fixing k = 1 and n = 3 . It can be seen from the Table 4, increasing M
gives rise to better approximate solutions in the vicinity of a singular point. The
multiresolution analysis of wavelets makes us able to increase the degree of Hermite
polynomials M to improve the accuracy of solutions. Figure 5 represents physical
interpretation of HWM solution with Exact solution of Eq. (5.10).
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Figure 4. Physical interpretation of HWM solution with exact so-
lution for Example 5.4 at k = 1 and M = 10.
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Table 4. AE of the HWM solution with exact solution for the Ex-
ample 5.5.

x Exact solution AE in HWM
at k=1,M=5

AE in HWM
at k=1,M=6

0.1 1.955336489125606 2.8829× 10−3 1.9364× 10−4

0.2 1.825335614909678 5.3545× 10−3 1.3101× 10−4

0.3 1.621609968270664 2.5862× 10−3 2.3644× 10−4

0.4 1.362357754476673 5.2520× 10−3 5.5722× 10−4

0.5 1.070737201667703 1.4618× 10−2 6.3018× 10−4

0.6 0.772797905306913 2.0665× 10−2 5.1178× 10−4

0.7 0.495153895400143 1.9569× 10−2 3.6521× 10−4

0.8 0.262606284458754 1.0909× 10−2 2.5895× 10−4

0.9 0.095927857982939 1.2406× 10−4 1.2737× 10−4

Example 5.6. Consider the following nonlinear Lane-Emden equation [30];

y′′(x) +
2

x
y′(x) + 4(2ey(x) + e

y(x)
2 ) = 0, 0 < x < 1, (5.11)

subjected to the initial conditions

y(0) = 0, y′(0) = 0,

the exact solution is y(x) = −2ln(1 + x2). We solve this equation by the present
method with k = 1 and M = 10. Table 5 represents the comparison between the ab-
solute error of approximate solution, analytical solution and other existing methods.
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Figure 5. Graphical representation of HWM solution and exact so-
lution for Example 5.5 at k = 1 and M = 10.

−0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

S
ol

ut
io

n

 

 
Exact solution
HWM solution

Table 5. AE of HWM, BPOM and Laguerre wavelet method
(LWM) for different values of k and M with exact solution for the
Example 5.6.

x Exact solu-
tion

AE by
BPOM at
k=1, M=5
[4].

AE by
LWM at
k=2, M=7
[30].

AE by
LWM at
k=3,M=7
[30].

AE by
HWM
at k=1,
M=10.

0.1 -0.01990066 2.0× 10−5 9.0× 10−9 4.5× 10−12 3.6×10−11

0.2 -0.07844142 2.4× 10−5 1.6× 10−9 2.4× 10−11 3.4×10−11

0.3 -0.17235532 2.4× 10−5 6.3× 10−9 5.3× 10−10 3.6×10−11

0.4 -0.29684001 1.8× 10−5 9.3× 10−9 1.1× 10−9 3.4×10−11

0.5 -0.44628710 2.4× 10−5 1.7× 10−10 1.4× 10−9 3.2×10−11

0.6 -0.61496939 2.9× 10−5 1.7× 10−7 1.7× 10−9 3.3×10−11

0.7 -0.79755223 2.5× 10−4 2.9× 10−7 1.8× 10−9 3.2×10−11

0.8 -0.98939248 1.4× 10−4 3.6× 10−7 1.6× 10−9 2.9×10−11

0.9 -1.18665369 8.6× 10−3 4.1× 10−7 1.3× 10−9 2.8×10−11

Figure 6 represents physical interpretation of approximate and exact solution for the
Eq. (5.11).

Example 5.7. Consider the initial value problem [12],

y′′(x)− 2ey = 0, 0 < x < 1, (5.12)
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Figure 6. Graphical representation of HWM solution and exact so-
lution for Example 5.6 at k = 1 and M = 10.
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subjected to the initial conditions

y(0) = 0, y′(0) = 0,

the exact solution is y(x) = −2 ln(cosx). Here, solving Eq. (5.12) using Hermite
wavelets collocation method and comparison between the Numerical solution, exact
solution and other existed method solutions can be observed in Table 6. Figure 7
represents the comparison between the approximate solution and analytical solution
graphically.

Example 5.8. Consider the oxygen diffusion problem [30],

y′′(x) +
2

x
y′(x) =

0.76129y(x)

y(x) + 0.03119
, 0 < x < 1, (5.13)

subjected to the boundary conditions

y′(0) = 0, 5y(1) + y′(1) = 5,

where exact solution is unknown. Now we solve this equation by present method
with k = 1 and different values of M. These solutions are in good agreement with the
method in [11] and this results are tabulated in Table 7. As increasing M gives rise
to better approximate solution, it can be seen from Table 7. Figure 8 shows absolute
error between solution obtained by present method and method in [30].

Example 5.9. Consider the initial value problem [7],

y′(x) + xey = 0, 0 < x < 1, (5.14)
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Table 6. AE of HWM, PIA and Legendre wavelet method (LWM)
with exact solution for the Example 5.7.

x Exact solution AE in
PIA(1,3)
algorithm
[12]

AE in
Legendre
wavelet [1]

AE in
HWM at
k=1,M=10

0.1 0.010016711246471 6.71×10−6 9.00×10−8 9.88×10−7

0.2 0.040269546104817 9.55×10−6 1.50×10−7 1.41×10−6

0.3 0.091383311852116 3.11×10−6 6.14×10−7 3.15×10−6

0.4 0.164458038150111 8.04×10−6 8.88×10−6 3.70×10−6

0.5 0.261168480887445 8.48×10−6 5.67×10−5 3.96×10−6

0.6 0.383930338838875 2.03×10−5 2.55×10−4 6.10×10−6

0.7 0.536171515135862 7.15×10−5 9.24×10−4 7.84×10−6

0.8 0.722781493622688 2.91×10−4 2.90×10−3 8.02×10−6

0.9 0.950884887171629 1.05×10−3 7.90×10−3 1.10×10−5

Figure 7. Graphical representation of HWM solution and exact so-
lution for Example 5.7 at k = 1 and M = 10.
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subjected to the initial condition

y(0) = 0,

the exact solution is y(x) = − ln(1 + x2

2 ). Here, we solved Eq. (5.14) using Hermite
wavelets collocation method and Adomian decomposition method (ADM). Compari-
son between the Numerical, exact and Adomian decomposition method solutions can
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Table 7. Numerical comparison between the HWM solution with
the method in [11] for the Example 5.8.

X Method in
[30]

Present
method at
k=1, M=5

Present
method at
k=1, M=6

Present
method at
k=1, M=7

0.1 0.8297060924 0.8297056673 0.8297060849 0.8297060920
0.2 0.8333747335 0.8333742707 0.8333747242 0.8333747334
0.3 0.8394899139 0.8394894941 0.8394898940 0.8394899138
0.4 0.8480527849 0.8480524878 0.8480527556 0.8480527850
0.5 0.8590649271 0.8590647777 0.8590648972 0.8590649272
0.6 0.8725283199 0.8725282654 0.8725282986 0.8725283197
0.7 0.8884453056 0.8884452280 0.8884452950 0.8884453055
0.8 0.9068185480 0.9068183182 0.9068185410 0.9068185481
0.9 0.9276509883 0.9276505645 0.9276509744 0.9276509882

Figure 8. Graphical representation of absolute error by HWM so-
lution with solution by [30] for Example 5.8 at k = 1 andM = 5, 6, 7.
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be observed in Table 8. Figure 9 represents the comparison between the approxi-
mate solutions of HWM, ADM and analytical solution graphically. On solving above
equation by ADM we obtain:

y1(x) =
−x2

2 ,

y2(x) =
x4

8 ,

y3(x) = −x6

24 ,
...
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Table 8. AE of HWM and ADM with exact solution for the Exam-
ple 5.9.

x Exact solution AE by
ADM Y4

AE by
ADM Y5

AE in
HWM at
k=1, M=10

0.1 -0.004987541511039 6.22×10−13 2.69×10−15 9.56×10−11

0.2 -0.019802627296180 6.29×10−10 1.04×10−11 1.31×10−5

0.3 -0.044016885416774 3.55×10−8 1.33×10−9 2.17×10−9

0.4 -0.076961041136128 6.14×10−7 4.08×10−8 3.20×10−9

0.5 -0.117783035656383 5.52×10−6 5.74×10−7 1.34×10−8

0.6 -0.165514438477573 3.28×10−5 4.91×10−6 1.17×10−9

0.7 -0.219135529916671 1.46×10−4 2.98×10−5 1.04×10−9

0.8 -0.277631736598280 5.30×10−4 1.40×10−4 3.75×10−8

0.9 -0.340037302785709 1.63×10−3 5.46×10−4 5.47×10−8

yn(x) = (−1)n (x2)n

n2n .

Then solution by ADM is,

y(x) = Y3(x) =
−x2

2 + x4

8 − x6

24 ,

y(x) = Y5(x) =
−x2

2 + x4

8 − x6

24 + x8

64 − x10

160 .

Figure 9. Graphical comparison between the HWM (at k = 1 and
M = 10), ADM Y5 with exact solution for Example 5.9.
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Figure 10. Graphical representation of AE by HWM (at k = 1 and
M = 10), ADM Y3, Y5 with exact solution for Example 5.9.
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Table 9. Comparison between the HWM and HM with exact solu-
tion for the Example 5.10.

x Exact solution HWM solution HM solution [3]
0.125 0.0081 0.0082 0.0088
0.375 0.0791 0.0792 0.0810
0.625 0.2361 0.2362 0.2399
0.875 0.4952 0.4953 0.4992

Example 5.10. Consider the initial value problem [3],

y′(x) + y(x) = ex, 0 < x < 1, (5.15)

subjected to the initial condition

y(0) = 0, y′(0) = 0,

the exact solution is y(x) = 1
2 (e

x − sinx − cosx). Here, we solved Eq. (5.15) using
Hermite wavelets collocation method and Haar wavelet method (HM). Comparison
between the numerical, exact and adomian decomposition method solutions can be
observed in Table 9.

6. Conclusion

In this paper, we introduced Hermite wavelet method (HWM) for solving linear
and nonlinear singular initial and boundary value problems for different physical con-
ditions. The proposed scheme is tested on some illustrative examples and the results



CMDE Vol. 7, No. 2, 2019, pp. 177-198 197

are presented in Tables and Figures in comparison with the exact solutions. HWM
solutions are quite satisfactory in comparison with the existing numerical solutions
available in the literature [1, 3, 4, 12, 13, 24, 30]. This scheme is easy to implement
with computer programs and it can be extend for higher order with slight modifica-
tion. Proposed Theorem 3.1 reveals that the present method will contribute exact
solution for differential equations, whose solutions are in the form of polynomials of
finite degree. This is important for the development of new research in the field of
numerical analysis and beneficial for new researchers. Also, Theorems 3.2 and 3.3 on
uniform convergence and error analysis.
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