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Factorization method for fractional Schrödinger equation in D-dimensional
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Abstract In this paper, we consider a D-dimensional fractional Schrödinger equation with
a Coulomb potential. By using the associated Laguerre and Jacobi equations, we

obtain the wave function and energy spectrum and this then enable us to separate
this equation in terms of the radial and angular momentum parts respectively. Also,
the associated Laguerre and Jacobi equations makes it possible to further factorize

the D-dimensional fractional Schrödinger equation such that the resulting equations
can be expressed in terms of the first order operators which are basically raising and

lowering operators.
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1. Introduction

The factorization method is an operational procedure to answer questions about
eigenvalue problems. The idea of this method is to consider a pair of first-order
differential equations which are equivalent to a given second-order differential equation
with boundary conditions. The eigenvalues and a manufacturing process for the
normalized eigenfunctions can be find by this method. The method also can handle
perturbation problems [4]. This idea has been used for solving different type of
problems [4, 6, 11, 15].

We are interested in using the factorization method to obtain the solution of the
fractional Schrödinger equation in D-dimensional fractional space so that we can
obtain the raising and lowering operators that are supersymmetric structures. The
putative fractional dimension can be considered as an effective dimension of com-
pactified higher dimensions or as a manifestation of a nontrivial microscopic lattice
structure of space [13]. Consequently the study of the Schrödinger equation in a non
integer dimensional space is still an open problem. We recall that the experimental
measurement of dimension D of the real world is D = (3±10−6) [14]. Thus, the frac-
tional value of D is in agreement with the experimental physical observations. We
highlight the application of the formalism in general relativity for example where the
gravitational fields are understood to be geometric perturbations in 4D-dimensional
space-time [9]. Another interesting example was provided by Zeilinger and Svozil
[16] regarding the current discrepancy between the theoretical and experimental val-
ues of the anomalous magnetic moment of the electron cloud. Other applications
of the suggested formalism from [14] are related to problems such as excitons [3],
magnetoexcitons [10].

Different authors have solved the Schrödinger equation in different settings [1, 7,
8, 14]. For example, Stillinger [14] defined a generalization of the Laplace operator in
a polar variable and then obtained fractional time-independent Schrödinger equation
with a potential that depended only on a radial distance r. He then separated this
equation into the radial and polar parts and then used the Gegenbauer polynomials
to solve the polar part. Furthermore, Eid et al. [1] solved the Schrödinger equation
in D-dimensional fractional space with a Coulomb potential for different values of b
and then obtained an exact solution. In this paper, we solve the equation by using
the factorization method and then show that we can use the method for b = 3 in D-
dimensional fractional space where a > 0. Thus, we use the factorization method from
[11] to find the solution of the Schrödinger equation with the non-central modified
Kratzer potential. In this method, the second order differential equations transforms
into product of two functions by using separation of variables. The methodology will
discuss in detail.

The structure of our paper is as follows: In section 2, we introduce the correspond-
ing fractional Schrödinger equation and then separate it to terms of radial and angular
momentum part. In section 3, we do calculation for the angular part of the equation
and we compare the resulting equation with the associated Jacobi equation to helps
us obtain the angular part of the wave function. Finally, we make use of the Jacobi
equation to get the first order operators. Then, we introduce the operators of the
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gl(2, c) Lie algebra on the group manifold SL(2, c), these operators are of the form
of the raising and lowering operators for the angular part of equation. In section 4,
we introduce the radial part of equation and compare it with the associated Laguerre
equation and obtain the radial part wave function. This comparing helps us to cal-
culated the energy spectrum and also to arrange α and β with the corresponding b
variable. In that case we obtain the first order operators which are the raising and
lowering operators. In section 5, we present the conclusion and also highlight some
open problem for future work.

2. Fractional Schrödinger equation

We start with the Schrödinger equation given by [14][
− ~2

2µ
(

1

rD−1
∂

∂r
(rD−1

∂

∂r
) +

l2

r2
)− e2 Kb

rb−2

]
ψ(r, θ) = (E − Eg)ψ(r, θ), (2.1)

where l2 corresponds to the angular momentum operator given by

l2ψ(r, θ) =

[
−~2
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∂
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∂

∂θ
)

]
ψ(r, θ) = l(l +D − 2)ψ(r, θ), (2.2)

such that D > 0 is a non integer number and the dimension of a solid. The constant
Kb is generally defined as

Kb =
Γ( b2 )

2Π
b
2 (b− 2)ε0

, b > 2.

We substitute Ψ(r, θ) = R(r)Θ(θ) into the Schrödinger equation (2.1). It leads to the
following equation with an independent variables:

rR′′ + (D − 1)R′ +
[2µr

~2

(
(E − Eg) + e2

Kb

rb−2

)
− l(l +D − 2)

r

]
R = 0, (2.3)

and similarly from Eq. (2.2) we obtain

Θ′′(θ) + (D − 2) cot θΘ′(θ) + l(l +D − 2)Θ(θ) = 0. (2.4)

In the next sections, our goal is to solve Eqs. (2.3) and (2.4) within the framework
of factorization method.

3. Angular part

Now, we solve the polar angle part of the Eq. (2.4). With the choice of the variable
x = − cos θ in Eq. (2.4), we obtain

(1− x2)Θ′′ + (1−D)xΘ′ − l(l +D − 2)Θ = 0. (3.1)

We substitute Θ(x) = U(x)P (x) into Eq. (3.1) and we get

(1− x2)P ′′(x) +

[
2(1− x2)

U ′

U
+ x(1−D)

]
P ′(x) + (3.2)[

(1− x2)
U ′′

U
+ x(1−D)

U ′

U
− l(l +D − 2)

]
P (x) = 0.
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Now, we compare Eq. (3.2) with the associated Jacobi differential equation given as
follows [2, 12]

(1− x2)P ′′ (α,L)n,m (x)− [2L+ (2α− 2L+ 2)x]P ′ (α,L)n,m (x) (3.3)

+

[
n(2α− 2L+ n+ 1)− m(2α− 2L+m+ 2Lx)

1− x2

]
P (α,L)
n,m (x) = 0,

and we obtain the parameters,

L = 0, (3.4)

αθ = ±D − 3

2
,

also, the angular momentum operator is

l(l +D − 2) = −n(n+ 1− 2αθ)−
2αθ + 3−D

2
. (3.5)

By using the shape invariance in Eq. (3.3), we obtain the operators J + (m) and
J − (m) on the homogeneous manifold SL(2, c)/GL(1, c) as follows

J + (m) =
∂

∂θ
− ı

sin θ

∂

∂φ
− 2(m+ αθ)− 1

2 tan θ
, (3.6)

J − (m) = − ∂

∂θ
− ı

sin θ

∂

∂φ
− 2(m+ αθ)− 1

2 tan θ
,

such that

J + (m)J − (m)ψn,0,m(θ, φ, 0) = En,mψn,0,m(θ, φ, 0), (3.7)

J − (m)J + (m)ψn,0,m−1(θ, φ, 0) = En,mψn,0,m−1(θ, φ, 0),

where

ψn,0,m(θ, φ, 0) = an(−1)m

[
(1− x2)−

2m+αθ−1

4

(
d

dx

)n−m
(1− x2)n+αθ

]
x=− cos θ

,

and the spectrum En,m have been introduced as the following equation[2]

En,m = (n−m+ 1)(n+m+ 2αθ).

By comparing Eq. (3.2) with the associated Jacobi differential equation in Eq. (3.3),
we obtain

U(x) = N0(1− x2)
2αθ−D+3

4 ,

so, the solution of Eq. (2.4) is

Θ(θ) = N0(sin(θ))
2αθ−D+3

2 ψn,0,m(θ, φ, 0).
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4. Radial Part

By the same procedure, we substitute R(r) = U(r)L(r) in Eq. (2.3) and we obtain

rL′′ +
[
2rU

′

U +D − 1
]
L′ +

[rU ′′
U

+ (D − 1)
U ′

U
(4.1)

+
2µr

~2

(
(E − Eg) + e2
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rb−2

)
− l(l +D − 2)

r

]
L = 0.

In order to obtain the function U(r), we compare Eq. (4.1) with the following asso-
ciated Laguerre differential equation

rL′′(α,β)n,m + (1 + α− βr)L′(α,β)n,m +

[
(n− m

2
)β − m

2
(α+

m

2
)
1

r

]
L(α,β)
n,m = 0,

and we obtain

U(r) = N0e
− βr2 r1+

α−D
2 . (4.2)

Therefore, from Eq. (4.2) we obtain the corresponding eigenfunction as

R(r) = N0e
− βr2 r1+

α−D
2 L(α,β)

n,m (r). (4.3)

Here, by comparing Eq. (4.1) with the associated Laguerre differential equation with

different b, we obtain α, β and E corresponding. If b = 3, then E = Eg− ~2β2

8µ so that

β =
4µe2K3

~2(D + 1− 2n+m)
, (4.4)

and α are roots of equation

α2 + 2mα+ (m2 − (D − 2)2 − 4l(l +D − 2)) = 0, (4.5)

so

E = Eg −
2µe4K2

3

~2
bn,m,D , (4.6)

where

bn,m,D =
1

(D + 1− 2n+m)
2 . (4.7)

Similarly as in the previous section, the raising and lowering operators Laguerre equa-
tion in the Rodrigues representation are,

A+
n,m = r

d

dr
− βr + n+ α− m

2
, A−n,m = −r d

dr
+ n− m

2
,

L(α,β)
n,m =

an,m(α, β)

rα+
m
2 e−βr

(
d

dx

)n−m
(rα+ne−βr),

where an,m(α, β) is the normalization coefficient. But, if b 6= 3 we cannot use the
factorization method for the solution of Eq. (2.3), because if b = 2 then we have to
solve the following system{

β
2 (1 + α) = (n− m

2 )β,

−1 + 1
4 (α2 −D2 + 4D)− l(l +D − 2) = −m2 (α+ m

2 ).
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Therefore, we obtain α and β as

α = −m± (a− 2 + 2l),

β = 0,

which is in contradiction with the definition of the weight function W (x) in [5]. So,
this condition leads us to have b = 3. Finally, we can say just for the case of b = 3
and the mentioned α and β, we factorized the second order equation in terms of first
order equation with respect to n and m. Also, from the normalization condition in
quantum mechanics, one can obtain the normalization coefficient N0 as∫ ∞

0

rR(r)R∗(r)dr = 1,

| N0 |2
∫ ∞
0

rL2 (α,β)
n,m (r)U2(r)d(r) = 1.

5. Conclusion

In this paper, we solved the D-dimensional fractional Schrödinger equation with a
Coulomb potential. We compered the radial and the angular parts with Laguerre and
associated Jacobi equation, respectively. These Laguerre and the associated Jacobi
helped us to factorized the radial and angular part of the corresponding equations.
Finally, we took advantage from these polynomials and obtained the wave function
and energy spectrum. In future, it may be interesting to show that the corresponding
raising and lowering operators for the radial and angular part of equations will be a
form of generators algebra. So, it may be interesting to study the partner potential
and supersymmetry generators. In that case, we can arrange the supercharges by
using the raising and lowering operators.
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