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Abstract This paper consists of two folds. At first, we deal with the stability analysis of

a linear system of delay differential equations. It is shown that the direct and
cluster treatment methods are not applicable if there are some purely imaginary
roots of the characteristic equation with multiplicity greater than one. To overcome

the above difficulty, the system is decomposed into several subsystems. For the
decomposition of a system, an invertible transformation is required to convert the
matrices of the system into a block triangular (diagonal) form simultaneously. To
achieve this goal, a necessary and sufficient condition is established. The second part

concerns the stabilization of a linear system of delay differential equations using the
delayed feedback method and design a controller for generating the desired response.
More precisely, the unstable poles of the linear system of delay differential equations
are moved to the left-half of the complex plane by the delayed feedback method. It

is shown that the performance of the linear system of delay differential equations
can be improved by applying the delayed feedback method.
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1. Introduction

Linear system of delay differential equations (LSDDE) appears naturally in many
branches of science and engineering. A common way of describing of an LSDDE is the
state-space representation which is frequently used in control theory. Unlike ordinary
differential equations (ODEs), in DDEs the rate of change of an unsteady process not
only depends on the current state but also depends on its history state.
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The stability analysis of an LSDDE is extremely important from both theoretical
and practical points of view [5, 15, 24]. Due to the presence of the delayed term in
an LSDDE, the corresponding characteristic equation is a quasi-polynomial instead
of a polynomial. Therefore, the stability analysis of such systems becomes more
complicated. Rekasius [21], Walton and Marshall [26] and Olgac and Sipahi [17]
presented some methods for the stability analysis of linear systems of DDEs. However,
these methods cannot be applied for an arbitrary LSDDE. More precisely, Mesbahi
and Haeri [14] presented an example of an LSDDE, which its characteristic equation
has a multiple root with multiplicity greater than one, that the method proposed by
Olgac and Sipahi cannot be used to analyze the stability of the system. They removed
the repeated roots by decomposing the original 4 by 4 system into two subsystems
with 2 by 2 dimension to perform the stability analysis of the original system.

One of the most common types of a DDE is the retarded one. In a retarded LSDDE,
the derivative term ẋ, does not depend on the delay. In this paper, we present some
retarded linear systems of DDEs that confirm the cluster treatment method [17] is not
applicable to the system’s stability analysis. Furthermore, we show that the direct
method [26] leads us to ambiguous results in detecting the number of unstable poles of
the presented systems. Nevertheless, decomposing the original linear systems of DDEs
into several subsystems enables one to handle the above difficulties. To decompose an
LSDDE with a single delay and with two state matrices, we need to find an invertible
transformation that simultaneously transforms both state matrices of the system into
block triangular (diagonal) forms.

The simultaneous triangularization (diagonalization) of a set of matrices has at-
tracted a great deal of attention recently because of applications in multidimensional
systems [3], discrete time switching systems [7] and differential inclusions [16, 23].
The following two questions are crucial in simultaneous triangularization (diagonal-
ization): 1- When two or more generally, a finite set of matrices can be transformed
simultaneously into a block triangular (diagonal) form? 2- What kind of transforma-
tions can put the matrices into a block triangular (diagonal) form simultaneously?
To answer the first question, one of the most famous classical theorems is McCoy’s
theorem [13] which states that the pair of matrices {A,B} is triangularizable if and
only if p(A,B)(AB −BA) is nilpotent for every noncommutative polynomial p.

It is easy to show that every set of commutative matrices can be simultaneously
transformed into an upper triangular form, but the converse is not true [6, 20]. Lev-
itzky [20] proved that every semigroup of nilpotent matrices is triangularizable. For a
semigroup of n by nmatrices, say F , over a field that contains all the eigenvalues of the
members of F and whose characteristic is either zero or greater than n

2 , Radjavi [19]
proved that F is triangularizable if and only if trace is permutable on F . Uhlig [25]
proved that the finest simultaneous block diagonalization of nonsingular pair of real
symmetric matrices A and B contains k blocks of dimensions n1, n2, . . . , nk if and
only if the real Jordan normal form of A−1B consists k Jordan blocks of dimensions
n1, n2, . . . , nk. Laffey [10] showed that for every n by n matrices A and B (n ≤ 5)
with the property that for all λ: A3 = B3 = (A + λB)5 = 0, the pair of matrices
{A,B} is triangularizable if and only if AB is nilpotent. Dubi [4] proposed an algo-
rithm to construct a simultaneous triangularization of a set on N matrices in Cn×n.
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His algorithm answers the first and second question for non-block triangularization
and uses Shemesh’s idea [22] to compute the invertible transformation. Kaczorek [8]
proved that a set of N real matrices {A1, A2, . . . , AN} is triangularizable if and only
if there exists a full column rank matrix J ∈ Rn×n such that rank[J AiJ ] = r for
i = 1, 2, . . . , N .

However, the presence of a time delay in a system can cause various complications,
but it can be useful in some senses. Kwon et al. [9] obtained the state feedback track-
ing controller by the delayed feedback method. They show that the performance of
a system can be improved by the delayed feedback method and also disturbance at-
tenuation and robustness against parameters variation can be modified. As we know,
a time delay can be a source for instability of an LSDDE. Nevertheless, Abdallah et
al. [1] showed that some oscillatory systems can be stabilized by the delayed feed-
back method. Pyragas [18] applied the delayed feedback method to control chaos
and also he employed this type of feedback to stabilize the unstable periodic orbits.
Usually, one of the major goals in control theory is controlling an equilibrium solution
or equivalently, the regulator problem. In fact, in a regulator problem, one needs to
obtain an asymptotically stable steady state solution which attracts all nearby initial
conditions. Dahms et al. [2] considered the extended time-delayed feedback method
to control unstable steady states.

In this paper, we show that the block simultaneous triangularization of a finite
set of square matrices is equivalent to the existence of a common invariant subspace
for the matrices. In this direction, we prove a proposition which characterizes the
invariant subspaces of a matrix by means of generalized eigenvectors [11]. Further-
more, we present some linear systems of DDEs that their stability analysis cannot
be investigated by the direct and the cluster treatment methods. Also, we show that
an unstable LSDDE can be stabilized by the delayed feedback method. In addition,
we adopt this feedback for putting the poles of an LSDDE in suitable coordinates to
generate a desired response for the system. More precisely, by the delayed feedback
method, the settling time of the system can be remarkably reduced.

The remaining of the paper is organized as follows. In section 2, we introduce
some required mathematical details and problem statement. Stability analysis of the
linear systems of DDEs using decomposition of the matrices of the system into a block
triangular (diagonal) form is considered in section 3. In section 4, stabilization of an
unstable LSDDE by the delayed feedback method is discussed. Section 5 is devoted to
design a controller via the delayed feedback method. Finally, conclusion is available
in section 6.

2. Mathematical details and problem statement

2.1. Definitions, lemmas and theorems. In this section, first, we address some
notations which are used throughout this paper and then we provide some definitions,
theorems, and lemmas which are related to simultaneous block triangularization of a
finite set of square matrices. Finally, the controllability theorem for the linear systems
of DDEs is expressed.

Rn and Cn are real and complex Euclidean spaces respectively. Rn×n (Cn×n) is the
space of real (complex) square n by n matrices. Also, we denote crossing frequencies



CMDE Vol. 7, No. 2, 2019, pp. 302-318 305

and their corresponding delays by ωck and τkl respectively, where k = 1, 2, . . . , n and
l = 1, 2, . . .. F (s, τ) denotes characteristic equation of an LSDDE.

Definition 2.1. Let A1, A2, . . . , AN be a set of matrices belong to Rn×n. This set
of matrices are said to be simultaneously block triangularizable with dimension k if
there exists an invertible transformation Q such that

QAiQ
−1 = Ãi =

[
Ãi1 Ãi2

0 Ãi4

]
, i = 1, 2, . . . , N, (2.1)

where Ãi1 ∈ Rk×k, Ãi2 ∈ Rk×(n−k), Ãi4 ∈ R(n−k)×(n−k) and 1 ≤ k < n.
Example 2.2. [8] Consider the following matrices

A1 =

 1 1 0
0 2 0
0 3 1

 , A2 =

 0 1 0
0 4 0
2 2 0

 .

If we put

Q =

 1 0 0
0 0 1
0 1 0

 ,

then we have

QA1Q
−1 =

 1 0 1
0 1 3
0 0 2

 , QA2Q
−1 =

 0 3 1
2 0 2
0 0 4

 .

Clearly, in this example k = 2.

Definition 2.3. A vector subspace V ⊂ Rn is said to be (A1, A2, . . . , AN)-invariant
if Aiv ∈ V for all v ∈ V and i = 1, 2, . . . , N .

Definition 2.4 ([6]). Let A be a matrix that belongs to Rn×n. x0, x1, . . . , xk is called
a Jordan chain of A corresponding to the eigenvalue λ0 if x0 ̸= 0 and the following
relations hold

Ax0 = λ0x0,

Ax1λ0x1 = x0,

Ax2 − λ0x2 = x1,

...

Axk − λ0xk = xk−1.

The first relation (together with x0 ̸= 0) confirms that x0 is an eigenvector of A
corresponding to the eigenvalue λ0. The vectors x1, x2, . . . , xk are called generalized
eigenvectors of A corresponding to the eigenvalue λ0 and the eigenvector x0.

Definition 2.5 ([11]). Let A ∈ Rn×n. A set of Jordan vectors for A is a set of linearly
independent vectors in Cn made up of a union of Jordan chains.
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Definition 2.6 ([5]). Consider the following system

ẋ(t) =

N∑
k=0

Akx(t− τk) +Bu(t), (2.2)

where x(t), u(t) ∈ Rn, A0, A1, . . . , AN , B ∈ Rn×n and τ0 = 0. The system is Rn-
controllable on [t0, t1] if for all x0 ∈ C(−τN , 0) and x1 ∈ Rn there exists a piecewise-
continuous function u(t) = u(t, x0, x1) such that the solution of the system (2.2) with
the initial condition xt0 = x0 satisfies xt1 = x1.

In the following theorem, we propose a necessary and sufficient condition for a finite
set of matrices to have the simultaneous block triangularization (diagonalization)
property.

Theorem 2.7. The matrices A1, A2, . . . , AN ∈ Rn×n are simultaneously block trian-
gularizable with dimension k if and only if there exists an (A1, A2, . . . , AN)-invariant
k-dimensional subspace W ⊂ Rn.

Proof. For the sake of simplicity, we prove this theorem only for two matrices. Let
W ⊂ Rn be an arbitrary k-dimensional vector subspace and

Q = [Qk Qn−k] = [q1 · · · qk qk+1 · · · qn],
be a nonsingular matrix where the first k columns of it, i.e., Qk = [q1 · · · qk]; form a
basis for the subspace W . By assuming

Q−1AiQ =

[
Ãi1 Ãi2

Ãi3 Ãi4

]
, i = 1, 2, (2.3)

we show that Ã13 = Ã23 = 0 if and only if the first k columns of Q, Qk, form a
basis for the subspace W . To do this end, let [ai,11 · · · ai,1k ] be the k columns of Ãi1

and [ai,31 · · · ai,3k ] be the k columns of Ãi3 for i = 1, 2, respectively. Since Q is a
nonsingular matrix, for i = 1, 2, Eq. (2.3) gives

Ai[Qk Qn−k] =[Qk Qn−k]

[
Ãi1 Ãi2

Ãi3 Ãi4

]
=[QkÃi1 +Qn−kÃi3 QkÃi2 +Qn−kÃi4]. (2.4)

Therefore, by equating corresponding columns in (2.4), we obtain the following rela-
tions

Aiqj = [QkÃi1 +Qn−kÃi3]j , j = 1, . . . , k, i = 1, 2.

So, for j = 1, . . . , k and i = 1, 2, we have

Aiqj = Qka
i,1
j +Qn−ka

i,3
j .

As the first k columns of Q are linearly independent, therefore Ã13 = Ã23 = 0,
which means that for i = 1, 2, W is Ai-invariant. Clearly, if W is Ai-invariant, then
Ã13 = Ã23 = 0. This completes the proof. �

Remark 2.8. It is clear that Q is not unique.
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The following corollaries are immediate consequence of Theorem 2.7.

Corollary 2.9. If A1, A2, . . . , AN have k common eigenvectors, then they can be
transformed simultaneously into a k-dimensional block triangular form.

Corollary 2.10. Let n = 2. A1, A2, . . . , AN are transformed simultaneously into a
block triangular form if and only if they have a common eigenvector.

The following theorem is a consequence of Theorem 2.7.

Theorem 2.11. [8] Let A1, A2, . . . , AN be the square matrices in Rn×n. These ma-
trices can be put simultaneously in the form (2.1) by means of transformation T , if
and only if there exists a full column rank matrix J ∈ Rn×r such that

rank[J AiJ ] = r, for i = 1, 2, · · · , N.

The following proposition characterizes k-dimensional invariant subspaces of a
square matrix A.

Proposition 2.12. Let A be a real n by n matrix. A k-dimensional subspace W ⊂ Rn

is A-invariant if and only if W has a basis consisting of a set of Jordan vectors for
A.

Proof. Assume W has a set of Jordan vectors, say {x1, x2, . . . , xk}, for A as a basis.
By the assumption, W = span < x1, x2, . . . , xk >. Since {x1, x2, . . . , xk} belongs to
a Jordan chain, so by proposition 1.3.1 in Ref. [6], W is A-invariant. Conversely, let
X = [x1, x2, . . . , xk] be a n by k matrix whose columns form an arbitrary basis for
W . Since W is A-invariant, there exists G ∈ Rk×k such that AX = XG. The Jordan
matrix decomposition of G can be written as G = SJS−1 for some S, which leads us
to AXS = XSJ and therefore, we get J = (XS)−1A(XS). Here, the columns of the
matrix XS form the Jordan vector for A. �

Now, we give the following theorem which is crucial for the controllability of linear
systems of DDEs.

Theorem 2.13. [12] If (A0 + A1, B) is controllable, then the following system is
controllable

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t),

where A0, A1, B ∈ Rn×n, u ∈ Rn×1.

2.2. Problem statement. In this paper, first, we consider the stability analysis of
the following linear systems of DDEs

ẋ(t) = A1x(t) +A2x(t− τ), (2.5)

where A1, A2 ∈ Rn×n and τ > 0 is time delay. We will show that the stability analysis
of some systems like (2.5) required to decompose them into subsystems with lower
dimension and then analyze the stability of each subsystem and finally stability of
the whole system is achieved. Second, by the delayed feedback method, we attempt
to stabilize the following system

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t), (2.6)

where τ > 0 is a fixed delay and A0, A1, B, u are the same as defined in Theorem 2.13.
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3. Stability analysis of linear systems of DDEs via decomposition

Here, we provide two examples of linear systems of DDEs that show the direct
method cannot recognize the number of unstable poles. In addition, the cluster
treatment method also fails to analyze the stability of the systems.

Example 3.1. Consider the following LSDDE

ẋ(t) = A1x(t) +A2x(t− τ), (3.1)

where

A1 =


3.2423 −1.4176 −2.7298 4.6267
−1.0366 −0.9812 −0.7598 −3.2319
2.0250 0.8723 0.0129 4.0908
−0.9802 1.5668 1.2885 −1.2741

 ,

A2 =


1.4104 1.1252 −0.1052 0.9652
−0.2045 −0.5965 −0.2415 0.2683
0.4985 0.7644 0.1801 0.4498
−0.3069 0.4843 0.4550 0.0060

 .

The characteristic equation of the LSDDE crosses the imaginary axis at s = ±j,
s = ±

√
3j, and corresponding delays are τk = π + 2πk,τk = 2πk√

3
, k = 0, 1, . . .,

respectively. All roots of the characteristic equation are in the right half-plane for
τ = 0. Therefore, the system is unstable for τ = 0. By using the direct method, the
expression sgnW

′
(ω2) is positive at ω =

√
3 and zero at ω = 1. Thus, the system is

unstable for all τ . In other words, the direct method says all roots of the characteristic
equation of the system (3.1) are in the right half-plane. If we want to apply the cluster

treatment method, then we have ∂F (s,τ)
∂s = 0 and ∂F (s,τ)

∂τ = 0 at crossing frequency
ω = 1. Hence, the root tendency cannot be determined.

Now, we decompose the system (3.1) as follows. A1 and A2 have a common invari-
ant subspace with dimension 2. A basis for this subspace can be considered as

E =


0.3878 0.8143
−0.2562 −0.1180
0.5371 0.2878
−0.2094 −0.1772

 .

In fact, a linear combination of the columns of E forms a two-dimensional (A1, A2)-
invariant subspace. One choice for the transformation T in (2.1) is

T =


−1.0000 3.6667 4.3333 0
1.7321 1.6000 0 1.2500
0.2857 0 0.8333 2.6667

0 2.2500 1.3333 0.6667

 .

By applying this transformation to the system (3.1), we derive two subsystems which
are

ż1(t) = Ā11z1(t) + B̄11z1(t− τ), (3.2)

ż2(t) = Ā22z2(t) + B̄22z2(t− τ), (3.3)



CMDE Vol. 7, No. 2, 2019, pp. 302-318 309

Figure 1. The roots of the characteristic equation of the subsys-
tem (3.2) for τ = 3.2.
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where x(t) = Tz(t) and

Ā11 =

[
0 1
−1 1

]
, B̄11 =

[
0 0
0 1

]
, Ā22 =

[
0 2
−1 0

]
,

B̄22 =

[
0 1
0 0

]
.

Now, we employ the direct method to each of the subsystems (3.2) and (3.3) sepa-

rately. Subsystem (3.2) has a crossing frequency at s = ±j and sgnW
′
(ω2) is zero

at this frequency. Therefore, the subsystem is unstable for all τ . The characteristic
equation of subsystem (3.3) crosses the imaginary axis at s = ±

√
3j and s = ±j.

The quantity sgnW
′
(ω2) is positive and negative at these frequencies, respectively.

Therefore, this subsystem is stable for π < τ < 2π√
3
. Thus, the system (3.1) has two

stable poles for π < τ < 2π√
3
. The roots of the characteristic equation of the sub-

system (3.2) and the root locus of the subsystem (3.3) near the imaginary axis are
plotted in Figure 1 and Figure 2, respectively.

Example 3.2. Let us analyze the stability of the following LSDDE

ẋ(t) = A1x(t) +A2x(t− τ), (3.4)
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Figure 2. The root locus of the subsystem (3.3) near the imaginary
axis for 0 < τ < 4.
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where

A1 =


−14.6102 −4.9441 11.3503 −11.5177 −11.9699
−3.9437 −1.0804 3.4948 −3.3674 −3.2193
6.4695 0.5153 −4.1521 3.9784 5.0394
6.0633 2.1406 −4.6372 5.0694 4.8474
20.3590 4.5468 −15.5102 13.5751 16.7733

 ,

A2 =


−11.1098 −3.6577 −2.2712 −13.4823 −4.0327
−3.1263 −1.0354 −0.6680 −3.7568 −1.1390
4.8695 1.7361 1.6197 5.1076 1.8581
4.4403 1.4397 0.8037 5.5222 1.5967
163449 5.4846 3.8268 19.2118 6.0034

 .

First, we decompose the system (3.4) into subsystems and then we apply the direct
method to each of the subsystems to explore the stability analysis of the whole system.
The columns of the full column rank matrix

E =


1.2775 −1.3977
0.6036 −0.4111
−0.5536 0.9967
−0.5480 0.4946
−1.9230 2.3550

 ,
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constitute a two-dimensional (A1, A2)-invariant subspace. We may choose the trans-
formation T in (2.1) as

T =


0.1250 4.5000 0.6667 2.7500 0
1.4142 0.7500 1.6250 0 0.7071
3.0000 0.8571 0 4.4286 1.0000
−1.0000 0 2.0000 2.6667 −2.0000

0 1.7321 −1.0000 1.4142 0.4286

 .

After applying this transformation to the system (3.4), we derive two subsystems as
follows

ż1(t) = Ā11z1(t) + B̄11z1(t− τ), (3.5)

ż2(t) = Ā22z2(t) + B̄22z2(t− τ), (3.6)

where x(t) = Tz(t) and

Ā11 =

[
0 1
−1 1

]
, B̄11 =

[
0 0
0 1

]
, Ā22 =

 0 0 −1
1 0 1
1 −1 1

 ,

B̄22 =

 0 0 0
0 0 0
1 0 0

 .

By applying the direct method, the subsystem (3.5) is always unstable while the
subsystem (3.6) has two stable poles for 3.1416 < τ < 3.3077. For this subsystem the

crossing frequencies are s = ±j and s = ±
√
1 +

√
2j. However, the direct method

confirms that all characteristic roots of the system (3.4) are in the right half-plane,
but by decomposing the system, we find out that the system has two stable poles
3.1416 < τ < 3.3077. The time domain response of the subsystem (3.5) for the
constant initial condition z1(t) = 1, −τ ≤ t ≤ 0, is sketched in Figure 3. Also,
Figure 4 confirms that the subsystem (3.6) has two stable poles for τ = 3.2.

4. Stabilization of unstable time delay systems by the delayed
feedback method

As we said in the introduction, the delayed feedback method can be employed to
stabilize an unstable LSDDE. However, there are infinitely many roots for the char-
acteristic equation of a retarded DDE, but the number of unstable poles are finite [5].
By considering this issue, we are attempting to move the unstable poles of an LSDDE
to the left-half complex plane by the delayed feedback method. Indeed, stabilization
of an unstable LSDDE is possible, if the characteristic equation of the system crosses
the imaginary axis. The larger crossing frequency of an LSDDE corresponds to one
where the roots of the characteristic equation of the system cross from left to right
(i.e., destabilizing) of the complex plane [26]. Therefore, to stabilize an unstable LS-
DDE by the delayed feedback method, the characteristic equation of the system must
be crossed the imaginary axis at least two times. After finding the crossing frequen-
cies (if they exist), we can compute the corresponding delays for each of the crossing
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Figure 3. Time domain response of the subsystem (3.5). The solid
line depicts z1(t) and dots display z2(t).
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frequencies. Finally, the interval of time delay which the closed-loop system is stable
can be obtained by the cluster treatment or direct methods.

As a concrete example, we consider the subsystem (3.2) that its stability analysis
is done in the previous section. Let us consider the open-loop time delay system as

ż(t) = A1z(t) +A2z(t− 3.2), (4.1)

where A1 and A2 are the same as Ã11 and B̃11, respectively. As we see earlier, the
system (4.1) had two unstable poles.

Now, our goal is the stabilization of the following closed-loop system by the delayed
feedback method

ż(t) = A1z(t) +A2z(t− 3.2)−BK(z(t)− z(t− τ)), (4.2)

where B = [1 0]T and K = [k1 k2]. As we said before, the stabilization of the
system (4.2) requires that the characteristic equation of the system (4.2) crosses the
imaginary axis. Before going further, we propose the following lemma which gives us
a necessary condition such that s = ωcj to be a root of the characteristic equation of
the system (4.2).

Lemma 4.1. If s = ωcβ is a root of the characteristic equation of the system (4.2),
where

ωcβ ∈ {ω ∈ R : |ω| ≤ β for someβ},
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Figure 4. The roots of the characteristic equation of the subsys-
tem (3.6) for τ = 3.2.
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then the following relation holds

k2 − |k2| − β(1− β) ≤ 1− k1 + |k1|(3 + β).

Proof. The proof is straightforward. By separating the real and imaginary parts of the
characteristic equation of the system (4.2), we get the following relations for s = jω

1 + cos(ω(τ + 3.2))k1 − k1ω sin(ωτ)+(k1 + k2) cos(ωτ)− k1 cos(3.2ω)

−ω sin(3.2ω)− ω2 − k1 − k2 = 0,

− sin(ω(τ + 3.2))k1 − k1ω cos(ωτ)−(k1 + k2) sin(ωτ) + k1 sin(3.2ω)

−ω cos(3.2ω) + k1(ω − 1) = 0.

After applying the triangle inequality and using the famous inequalities | sin(x)|,
| cos(x)| ≤ 1, the result follows immediately. �

Now, we return to the stabilization process. According to Lemma 4.1, if we choose
k1 = 1 and k2 = −5, then there are two crossing frequencies. These frequencies and
corresponding delays are

ωc1 = ±1.6564, τ11 = 0.4540, τ12 = 4.2473, . . . ,

ωc2 = ±3.5116, τ21 = 0.9469, τ22 = 2.7362, . . . .
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Figure 5. Time domain response of the system (4.2) for τ = 0.5,
k1 = 1, k2 = −5. The solid line depicts z1(t) and dots display z2(t).
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After obtaining the crossing frequencies, there are two scenarios which can be used to
find the stability interval. The first one is the direct method. Using this method yields
that the roots of the characteristic equation of the system move to the right half-plane
at the larger crossing frequency and the next larger corresponds to stabilizing one.
Therefore, the system (4.2) is stable for 0.4540 < τ < 0.9469. In the second scenario,
we apply the cluster treatment method. The root tendency at the larger crossing
frequency is 1 and it is −1 at the next one. Hence, the time delay system (4.2) is
stable for 0.4540 < τ < 0.9469. In fact, these two approaches yield the same result.
The time domain response and the root locus of the system (4.2) near the imaginary
axis for τ = 0.5, k1 = 1 and k2 = −5 are illustrated in Figure 5 and Figure 6,
respectively.

5. Design controller via the delayed feedback method

In this section, we employ the delayed feedback method to produce a desired re-
sponse for an LSDDE. As we know, the response of a stable linear time-invariant
system extremely depends on its dominant poles. Since by the method of steps [5],
an LSDDE can be converted to a linear system of ODEs, the dominant poles of an
LSDDE determine the response of the system. By summarizing the above issues, the
response of a stable LSDDE can be determined by its dominant poles. In general
case, i.e., when the LSDDE has some unstable poles, the rightmost pole determine
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Figure 6. The root locus of the system (4.2) near the imaginary
axis for 0 < τ < 2.
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the response. Here, we consider the subsystem (3.3) and we change the location of
its dominant poles by the delayed feedback method.

Let

ż(t) = A1z(t) +A2z(t− 3.2), (5.1)

where A1 and A2 are the same as Ã11 and B̃11, respectively. As we see in Figure 7,
the settling time for this system is very high. To reduce the settling time of the
system (5.1), we consider the following closed-loop system

ż(t) = A1z(t) +A2z(t− 3.2)−BK(z(t)− z(t− τ)), (5.2)

where B = [1 0]T and K = [k1 k2]. If we force s = −0.3254±0.3254j to be poles of
the system (5.2), the settling time is highly reduced. After doing this, we obtain two
equations. Here, we have three parameters. We choose τ freely. If we put τ = 0.1,
then we have k1 = 40.5925 and k2 = −105.0352. The response of the system (5.2) is
plotted in Figure 8.

6. Conclusion

In this paper, we showed that the stability of some linear systems of DDEs cannot
be analyzed by the direct and cluster treatment methods. For analyzing the stability
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Figure 7. Time domain response of the system (5.1). The solid line
depicts z1(t) and dots display z2(t).
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of such systems, we decomposed them into several subsystems by an invertible trans-
formation. Furthermore, we discussed the problem of stabilization of an LSDDE by
the delayed feedback method. Also, we improved the performance of an LSDDE by
this type of feedback. Further studies may be considered to evaluate the stability and
stabilization of neutral type systems.
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Figure 8. Time domain response of the system (5.2) for τ = 0.1,
k1 = 40.5925 and k2 = −105.0352. The solid line depicts z1(t) and
dots display z2(t).
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