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Abstract Predictor-corrector (PC) methods for the numerical solution of stiff ODEs can be
extended to include the second derivative of the solution. In this paper, we con-
sider second derivative PC methods with the three-step second derivative Adams-
Bashforth as predictor and two-step second derivative Adams-Moulton as corrector

which both methods have order six. Implementation of the proposed PC method
is discussed by providing Nordsieck representation of the method and preparing an
starting procedure, an estimate for local truncation error and a formula for chang-
ing stepsize. Efficiency and capability of the method are shown by some numerical

experiments.
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1. Introduction

Many codes have been introduced for solving

y′(x) = f(x, y), y(x0) = y0, x ∈ I := [x0, x], (1.1)

where f : I × Rm → Rm and m is the dimensionality of the system, in the class
of linear multistep methods (LMMs) which use first derivatives of the solution (for
instance [6, 9, 15]). Adams methods [7, 14] for the numerical integration of (1.1) are
an special case of LMMs which are usually implemented in predictor-corrector (PC)
form.

For problems in which

g(x, y) := fx(x, y) + fy(x, y) · f(x, y) = y′′,

can be calculated along with f(x, y), at a moderate additional cost, second derivative
methods become feasible which can be of high order of accuracy. In this class of the
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methods, some successful methods have been introduced that have good properties,
especially for stiff problems [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 16, 17]. Here, we will
use second derivative Adams methods as PC pairs which k–step second derivative
Adams-Bashforth method (ABM)

yn = yn−1 + h(â1fn−1 + â2fn−2 + · · ·+ âkfn−k)

+ h2(b̂1gn−1 + b̂2gn−2 + · · ·+ b̂kgn−k),
(1.2)

is used for predicted part and (k−1)–step second derivative Adams-Moulton method
(AMM)

yn = yn−1 + h(a0fn + a1fn−1 + · · ·+ ak−1fn−k+1)

+ h2(b0gn + b1gn−1 + · · ·+ bk−1gn−k+1),
(1.3)

is used for corrected part. Here, fn−i = f(xn−i, yn−i) and gn−i = g(xn−i, yn−i),
i = 0, 1, . . . , k.

In this paper, we describe a nice approach to the implementation of the PECE
(predict-evaluate-correct-evaluate) mode of PC formulas (1.2)–(1.3) with k = 3 in a
variable stepsize environment using Nordsieck representation. For k = 3, the coeffi-
cients of the methods (1.2) and (1.3) are chosen so that these methods have order six.
In this way, the resulting ABM and AMM take the forms

yn = yn−1 −
949

240
hfn−1 +

38

15
hfn−2 +

581

240
hfn−3 +

637

240
h2gn−1

+
9

2
h2gn−2 +

173

240
h2gn−3,

(1.4)

and

yn = yn−1 +
101

240
hfn +

8

15
hfn−1 +

11

240
hfn−2 −

13

240
h2gn

+
1

6
h2gn−1 +

1

80
h2gn−2,

(1.5)

respectively.
The paper is organized along the following lines. In Section 2, Nordsieck represen-

tation of the PC pairs (1.4) and (1.5) is obtained. This leads to a discussion of the
variable stepsize mode of the proposed method and implementation issues including
starting procedures, local error estimation and stepsize control. These are explained
in Section 3. Finally, some numerical results are given in Section 4 to show efficiency
of the method.

2. Nordsieck representation of the PC pairs

Nordsieck representation of the methods makes them very proper for implementa-
tion in a variable stepsize environment. Indeed, in this way, changing stepsize can be
done very simple and inexpensive. Here we concentrate on a sixth order PC method
consisting of the three step ABM (1.4) as a predictor and two step ABM (1.5) as a
corrector.
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For a Nordsieck method of order p, the input and output data at the step number
n are in the form

Np,n−1 =


y(xn−1)

hy′(xn−1)
...

hpy(p)(xn−1)

+O(hp+1) and Np,n =


y(xn)

hy′(xn)
...

hpy(p)(xn)

+O(hp+1),

respectively. So, for our method which is of order six, the output vector must have
seven components including values at the current point xn and previous points xn−1

and xn−2. We choose the output vector as

Yn =



yn
hfn
h2gn
hfn−1

h2gn−1

hfn−2

h2gn−2


=



y(xn)
hy′(xn)
h2y′′(xn)
hy′(xn−1)
h2y′′(xn−1)
hy′(xn−2)
h2y′′(xn−2)


+O(h7). (2.1)

Where y(x) is the exact solution of the equation y′ = f(x, y) at the point x. By using
Taylor expansion for each component of the vector in the right hand side of (2.1), we
have



y(xn)
hy′(xn)
h2y′′(xn)
hy′(xn−1)
h2y′′(xn−1)
hy′(xn−2)
h2y′′(xn−2)


= T



y(xn)

hy′(xn)

h2

2! y
′′(xn)

h3

3! y
′′′(xn)

h4

4! y
(4)(xn)

h5

5! y
(5)(xn)

h6

6! y
(6)(xn)


+O(h7), (2.2)

where

T =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 2 0 0 0 0
0 1 −2 3 −4 5 −6
0 0 2 −6 12 −20 30
0 1 −4 12 −32 80 −192
0 0 2 −12 48 −160 480


.

So, we obtain the relation between the vectors Yn and Nn given by

Yn = T N6,n. (2.3)

Now, we derive Nordsieck form of the PC pairs (1.4) and (1.5) in the PECE mode.
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• First stage
At the first stage, we obtain an approximation using predictor equation

y∗n = yn−1 −
949

240
hfn−1 +

38

15
hfn−2 +

581

240
hfn−3 +

637

240
h2gn−1

+
9

2
h2gn−2 +

173

240
h2gn−3.

(2.4)

Since the values yn−1, fn−1, gn−1, fn−2, gn−2, fn−3, and gn−3 are available,
the vector representing input and output data at the step number n, are in
the form

Zn−1 ≈



y(xn−1)
hf(xn−1)
h2g(xn−1)
hf(xn−2)
h2g(xn−2)
hf(xn−3)
h2g(xn−3)


and Zn ≈



y(xn)
hf(xn)
h2g(xn)
hf(xn−1)
h2g(xn−1)
hf(xn−2)
h2g(xn−2)


, (2.5)

respectively. Now we define the vector Z∗
n: The first component of it is y∗n

obtained by predictor equation (2.4) and the next two components are related
to the evaluate step, and the last four components are hf(xn−1), h

2g(xn−1),
hf(xn−2), and h2g(xn−2). So it can be written in the form

Z∗
n = H Zn−1, (2.6)

where

H =



1 −949
240

637
240

38
15

9
2

581
240

173
240

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0


.

We note that Z∗
n means the vector of predicted values and Zn−1 is the vector

of values at the previous step.
• Second step

The second step is to evaluate functions f and g at the point (xn, y
∗
n) and

add them into the formula (2.6). To do this, we define the vectors

E1 =
[
0 hf(xn, y

∗
n) 0 0 0 0 0

]
,

and

E2 =
[
0 0 h2g(xn, y

∗
n) 0 0 0 0

]
,

then we define a new vector of two stages predict-evaluate in the form

Y ∗
n = H Zn−1 + E1 + E2. (2.7)
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To write (2.7) in terms of Nordsieck vectors, at first we note that by Taylor
expansion, we have

E1 = e2
[
0 1 2 3 4 5 6

]
N6,n−1 +O(h7),

and

E2 = e3
[
0 0 1 3 6 10 15

]
N6,n−1 +O(h7),

where the vectors e2 and e3 are the second and third columns of the identity
matrix of dimension seven, respectively. Now, the Nordsieck representation
of (2.7) is

N∗
6,n = P N6,n−1,

with

P = T−1HT + T−1e2
[
0 1 2 3 4 5 6

]
+ 2T−1e3

[
0 0 1 3 6 10 15

]
,

which is the upper triangular Pascal matrix.
• Third step

In this step, we include the correction equation. The Nordsieck representation
for PEC Adams method of order six is

N6,n = PN6,n−1 + δ1T
−1α+ δ2T

−1β, (2.8)

where α and β are equal to vectors a0 e1 + e2 and b0 e1 + e3, that are the
corresponding coefficients a0 = 101

240 and b0 = − 13
240 from the terms 101

240hfn
and − 13

240h
2gn, respectively, in the correction equation (1.5). Here, the error

estimations δ1 and δ2 with

δ1 = hf(y∗n)− [0 1 2 3 4 5 6]N6,n−1,

δ2 = h2g(y∗n)− 2[0 0 1 3 6 10 15]N6,n−1.

represent the correction of the first and second derivatives, respectively.
• Fourth step

Finally, we include the final step which is related to the functions evaluations
at (xn, yn)

fn = f(xn, yn), gn = g(xn, yn),

to be used in the next time step.

3. Practical implementation of the method

In this section, we concentrate on the implementation issues for our method. Nord-
sieck PC method (2.8) in the variable stepsize mode is in the form

N6,n = (PD(θn))N6,n−1 + δ1T1 + δ2T2 (3.1)
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where

T1 =
[101
240

1 0 − 23

12
− 33

16
− 17

20
− 1

8

]
,

T2 =
[
− 13

240
0

1

2
1

13

16

3

10

1

24

]
.

and D(θn) is the rescaling matrix defined by

D(θn) := diag(1, θn, θ
2
n, . . . , θ

p
n),

with θn as the ratio of consecutive stepsizes, θn = hn/hn−1, and hn = xn − xn−1.

3.1. Starting procedure. For the method of order p = 6 (2.8), a starting procedure
of order six is required to approximate the initial Nordsieck vector N6,0 which is an
approximation to the vector[

y(x0) hy′(x0)
h2

2!
y′′(x0) · · · h6

6!
y(6)(x0)

]T
.

Since the first three components of this vector is known, we need to approximate only
the last four components of that. To do that, we carry out one step of a Runge–Kutta
method with abscissa vector c̃ which gives sufficient output information, ỹ1 ≈ y(x0 +

h0) and Ỹi ≈ y(x0 + c̃ih0), i = 1, 2, . . . , s. We can obtain a reliable approximations
by using some linear combination of these information as

h3y(3)(x0) = a1y(x0) + a2hy
′(x0) + a3h

2y′′(x0) + a4h
2g(Ỹ1) + a5h

2g(Ỹ2)

+ a6h
2g(Ỹ3) + a7h

2g(Ỹ4) +O(h7),

h4y(4)(x0) = b1y(x0) + b2hy
′(x0) + b3h

2y′′(x0) + b4h
2g(Ỹ1) + b5h

2g(Ỹ2)

+ b6h
2g(Ỹ3) + b7h

2g(Ỹ4) +O(h7),

h5y(5)(x0) = c1y(x0) + c2hy
′(x0) + c3h

2y′′(x0) + c4h
2g(Ỹ1) + c5h

2g(Ỹ2)

+ c6h
2g(Ỹ3) + c7h

2g(Ỹ4) +O(h7),

h6y(6)(x0) = d1y(x0) + d2hy
′(x0) + d3h

2y′′(x0) + d4h
2g(Ỹ1) + d5h

2g(Ỹ2)

+ d6h
2g(Ỹ3) + d7h

2g(Ỹ4) +O(h7).

3.2. Local error estimation. The local truncation error of a method of order p, in
the step number n, is defined by

LTE(xn) = Cph
p+1y(p+1)(xn) +O(hp+2),

where Cp is the error constant of the method. In order to control the stepsize, we
need to estimate the local truncation error for each step. Here, the estimation of LTE
is produced by using the Milne device which is based on the difference of the predictor
and corrector approximations: Denoting the error constants for the Adams-Bashforth
and Adams-Moulton of order p by C∗

p and Cp, respectively, we have

y∗n = y(xn)− C∗
ph

p+1y(p+1)(xn) +O(hp+2),
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yn = y(xn)− Cph
p+1y(p+1)(xn) +O(hp+2),

which using the Milne device implies

y(xn)− yn =
Cp

Cp − C∗
p

(y∗ − yn) +O(hp+2).

For p = 6, we have C∗
6 =

53

4725
, C6 =

1

9450
, and so

y(xn) = yn +
1

105
(yn − y∗n) +O(h8).

Hence ∥LTE(xn)∥ can be estimated as

∥LTE(xn)∥ =
1

105
∥(yn − y∗n)∥.

3.3. Stepsize control. After estimating the local truncation error, we can control
the stepsize by monitoring this estimation. For the given absolute and relative toler-
ances, Atol and Rtol respectively, we use the following control

∥LTE(xn)∥ ≤ Rtol ·max{∥yn∥, ∥yn+1∥}+Atol, (3.2)

to control the stepsize in the proceeding from xn to xn+1. If the control (3.2) is not
satisfied, the current step is repeated with the halved stepsize. Otherwise, the current
step is accepted and we carry our the next step with the new stepsize as

hn+1 = θn+1hn,

where

θn+1 = min
{
2, α

( tol

∥LTE(xn)∥

) 1
7
}
.

In our numerical experiments we have used Atol = Rtol = tol, and the safety factor
α = 0.9 to guard against unnecessary step failures.

4. Numerical experiments

In this section we present the results of numerical experiments to show efficiency
of the constructed method of order six in the variable stepsize mode.

Computational experiments are done by applying our method on the following
problems.

P1. The modified Kepler problem

y′1 = ∂H(y)
∂y3

,

y′2 = ∂H(y)
∂y4

,

y′3 = −∂H(y)
∂y1

,

y′4 = −∂H(y)
∂y2

,
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with H(y) =
y23 + y24

2
− 1

r
− ϵ

2r3
and r =

√
y21 + y22 where ϵ is a positive or negative

small number. The initial conditions are

y1 = 1− e,

y2 = 0,

y3 = 0,

y4 =

√
1 + e

1− e
.

In the numerical results, we take ϵ = 0.01 and e = 0.6.
P2. The famous Lorenz equations provide a simple example of a chaotic system.

They are given by
y′1 = σ(y2 − y1),

y′2 = ry1 − y2 − y1y3,

y′3 = y1y2 − by3,

where σ, r and b are positive parameters. Following Lorenz, we set σ = 10, b =
8/3, r = 28, y(0) = [0, 1, 0]T and x ∈ [0, 50].

P3. The third problem is the Kepler’s problem also known as the one-body problem
which describes the motion of a single planet moving around a heavy sun. The
problem is given by

y′1 = y3,

y′2 = y4,

y′3 =
−y1

(y21 + y22)
3/2

,

y′4 =
−y2

(y21 + y22)
3/2

,

and the initial values are prescribed to be

y1 = 1− e,

y2 = 0,

y3 = 0,

y4 =

√
1 + e

1− e
,

where e is the eccentricity of an ellipse on which the orbit lies. With these initial
values, all points in the orbit lie on the ellipse

(y1 + e)2 +
y22

1− e2
= 1.

The results of numerical experiments for these problems are presented in Tables
1 – 4. In these tables ns, nrs, hmin, hmax, and ge are the number of steps, the number
of rejected steps, the smallest used stepsize, the largest used stepsize, and the global
error, respectively.
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Table 1. Numerical results for problem P1 solved by the method
(3.1) with h0 = 10−2 and x ∈ [0, 500].

tol ns nrs hmin hmax ge

10−10 9787 185 ≈ 6.92× 10−4 ≈ 2.11× 10−1 6.8136× 10−12

10−11 13365 5 ≈ 3.27× 10−4 ≈ 1.48× 10−1 6.4037× 10−12

10−12 18583 6 ≈ 1.56× 10−4 ≈ 1.04× 10−1 5.8367× 10−13

10−14 35896 8 ≈ 3.64× 10−5 ≈ 5.33× 10−2 5.2873× 10−15

Table 2. Numerical results for problem P2 solved by the method
(3.1) with h0 = 10−2 and x ∈ [0, 50].

tol ns nrs hmin hmax ge

10−7 4952 592 ≈ 1.32× 10−3 ≈ 2.65× 10−2 3.7237× 10−8

10−8 5289 278 ≈ 6.47× 10−4 ≈ 2.05× 10−2 4.5766× 10−9

10−9 6474 48 ≈ 3.05× 10−4 ≈ 1.71× 10−2 6.0246× 10−10

10−10 8923 9 ≈ 1.46× 10−4 ≈ 1.26× 10−2 4.7838× 10−11

Table 3. Numerical results for problem P3 solved by the method
(3.1) with e = 0.5, h0 = 10−3 and x ∈ [0, 10π].

tol ns nrs hmin hmax ge

10−10 759 331 ≈ 4.98× 10−4 ≈ 1.85× 10−1 1.6253× 10−7

10−11 1050 488 ≈ 1.79× 10−4 ≈ 1.14× 10−1 1.0812× 10−8

10−12 1448 677 ≈ 2.51× 10−4 ≈ 8.95× 10−2 1.3658× 10−9

10−14 2778 1313 ≈ 4.87× 10−5 ≈ 5.07× 10−2 1.3166× 10−11

Table 4. Numerical results for problem P3 solved by the method
(3.1) with e = 0.75, h0 = 10−3 and x ∈ [0, 10π].

tol ns nrs hmin hmax ge

10−10 1074 580 ≈ 1.58× 10−4 ≈ 1.79× 10−1 1.7627× 10−7

10−11 1482 766 ≈ 1.19× 10−4 ≈ 1.30× 10−1 3.5347× 10−8

10−12 2045 1083 ≈ 6.19× 10−5 ≈ 9.38× 10−2 1.8575× 10−9

10−14 3942 2159 ≈ 1.29× 10−5 ≈ 5.17× 10−2 1.3269× 10−11

It is known that Kepler’s problem is a Hamiltonian problem and by Figures 1 and
2, we can see that the method does not preserve the structure for the tolerance equals
to tol = 10−4. While by decreasing the tolerance to tol = 10−14, Figures 3 and 4
present the solution almost without errors. Also, in Figures 5 and 6, errors for the
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Figure 1. Solution of Kepler’s problem with e = 0.5, tol = 10−4, and
xmax = 50π.

y1
-2 -1.5 -1 -0.5 0 0.5

y2

-1

-0.5

0

0.5

1

Figure 2. Solution of Kepler’s problem with e = 0.75, tol = 10−4, and
xmax = 50π.
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y2
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0
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0.8

Figure 3. Solution of Kepler’s problem with e = 0.5, tol = 10−14, and
xmax = 10π.

y1
-1.5 -1 -0.5 0 0.5

y2

-1

-0.5

0

0.5

1

quantities

H(y) =
1

2
(y23 + y24)− (y21 + y22)

−1/2,

as the “Hamiltonian” of system and

A(y) = y1y4 − y2y3,
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Figure 4. Solution of Kepler’s problem with e = 0.75, tol = 10−14, and
xmax = 10π.
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as the “angular momentum” of system which are constant over the integration, have
been plotted. This figures confirm that the method is capable to conserve these
quantities of the system.

Figure 5. Errors in the Hamiltonian H for the Kepler’s problem.

0 50 100 150 200 250 300 350

# 10-12

0

1

2

3

4

5

Figure 6. Errors in the angular momentum for the Kepler’s problem.
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5. Conclusion

A predictor-corrector method of order six based on the three-step second deriva-
tive Adams-Bashforth and two-step second derivative Adams-Moulton was analyzed.
Using Nordsieck technique, variable stepsize mode of the method was introduced and
its practical implementation was discussed by preparing a starting procedure, an es-
timation for the local truncation error, and changing stepsize strategy. Some system
of differential equations were successfully tested.
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