
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 7, No. 1, 2019, pp. 138-151

Stable Gaussian radial basis function method for solving Helmholtz
equations

Jalil Rashidinia∗
School of Mathematics, Iran University of
Science and Technology, Tehran, Iran.
E-mail: rashidinia@iust.ac.ir

Manoochehr Khasi
School of Mathematics, Iran University of
Science and Technology, Tehran, Iran.
E-mail: m khasi@iust.ac.ir

Abstract Radial basis functions (RBFs) are a powerful method for obtaining the numerical
solution of high-dimensional problems. They are often referred to as a meshfree

method and the spectrally accurate can be achieved by them. In this paper, we ana-

lyze a new stable method for evaluating Gaussian radial basis function interpolants
based on the eigenfunction expansion. We develop our approach in two-dimensional

spaces for solving Helmholtz equations. In this paper, the eigenfunction expansions

are rebuilt based on Chebyshev polynomials which are more suitable in numerical
computations. Numerical examples are presented to demonstrate the effectiveness

and robustness of the proposed method for solving two-dimensional Helmholtz equa-

tions.
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1. Introduction

Helmholtz equation is very important in a variety of science and engineering prob-
lems, for example, in physics, technology, geophysics and optical problems. There are
several numerical methods for solving the Helmholtz equation. Among them we can
mention the Finite element method in [2], the Finite volume method in [13, 21], the
Boundary element method in [22], spectral element methods in [17, 19], radial basis
function method in [15], or spectral methods in [1, 16].

Radial basis functions (RBFs) have been used in many branches of science and
engineering. Today there are many books related to the theory, applications and
implementations of RBFs (see [3, 6, 23, 25]). By using infinitely smooth basis functions
such as Gaussians or Multiquadric , the exponential convergence rate can be achieved
[9, 25]. The best accuracy can usually be obtained when the shape parameter is small.
But we should mention that as the shape parameter becomes small, the interpolant
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matrix becomes increasingly ill-conditioned. This fact has led to a growing number
of stable approaches to overcome this problem, such as the Contour-Padé approach
[8] or the RBF-QR method which in 2007 was introduced by Fornberg and Piret
[10, 11] and later on by Larsson [14]. In [7], Fasshauer and McCourt developed a
different type of the RBF-QR method by considering an eigenfunction expansion of
the Gaussian RBF. They established a connection between the RBF-QR algorithm
and Mercer’s theorem which states any positive definite kernel such as Gaussian has
an eigenfunction expansion . In our previous work [20], we changed the eigenfunction
expansion approach for evaluating Gaussian RBF interpolants by taking advantage
of the orthogonality of the eigenfunctions which are based on Hermite polynomials.

In this article, we study numerical solution by a stable approach based on the
eigenfunction expansions of Gaussian Radial basis functions which is an extension of
our previous work [20]. The eigenfunction expansions are rebuilt based on Chebyshev
polynomials, which are more suitable in numerical computations.

In this paper, we consider the following two-dimensional Helmholtz equation

∆u+ k2u = f(x, y), in Ω, (1.1)

where f is a smooth functions, ∆ = ∂2

∂x2 + ∂2

∂y2 is Laplacin operator, Ω is a bounded

domain in R2, k is the wavenumber defined as k := 2πp/v with p and v stating fre-
quency and speed, respectively, and u is the unknown solution representing a pressure
field. The wavenumber k is a constant for the homogeneous medium, and varies for
the heterogeneous medium. On the boundary ∂Ω, a Robin boundary condition is
used:

αu(x, y) + β
∂u

∂n
(x, y) = h(x, y), on ∂Ω, (1.2)

where n is the outward unit normal vector to the boundary, h(x, y) is a smooth
function, and α, β are non zero, simultaneously. If α 6= 0, β = 0, the boundary
conditions can be imposed as Dirichlet boundary conditions and if α = 0, β 6= 0, they
can be imposed as Neumann boundary conditions.

The remaining part of this paper is organized as follows. Section 2 is devoted
to some essential concepts about the stable method for Gaussian RBF interpolation
based on eigenfunction expansions. In Section 3, the solution of two-dimensional
Helmholtz equations are investigated. In Section 4, some numerical experiments that
illustrate the accuracy, efficiency and stability of the proposed method are included.

2. A new stable method for 2d Gaussian RBF interpolation

Before discussing the discretization of the equation (1.1), we present a brief sum-
mary of the new stable method for Gaussian RBF interpolation. Based on Mercer’s
theorem, every positive definite kernel K : Ω×Ω→ R where Ω ⊂ Rd, can be explained
in terms of the positive eigenvalues λn → 0 and normalized eigenfunctions ϕn of an
associated compact integral operator [24]. In fact

K(x, z) =

∞∑
n=1

λnϕn(x)ϕn(z). (2.1)
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Now suppose K is a native Hilbert space of functions on Ω, X = {x1, . . . ,xN} ⊂ Ω
is the set of centers and KX = span{K(·,xj), xj ∈ X} is the subspace spanned by
the basis K(·,xj), 1 ≤ xj ≤ N . We can write the interpolant sf ∈ KX of f ∈ K at
x1, . . . ,xN as

sf (x) =

N∑
j=1

cjK(x,xj),

where the coefficients cj are determined by the interpolation conditions sf (xj) =
f(xj) : j = 1, · · · , N ; i.e., they can be obtained by solving the following N × N
linear system

Kc = f ,

where f = (f(x1), · · · , f(xN ))T , c = (c1, · · · , cN )T , and

K =

 K(x1,x1) · · · K(x1,xN )
...

...
K(xN ,x1) · · · K(xN ,xN )

 .
In applications, we have to truncate the series in (2.1). By choosing N terms of the
series (2.1), and ignoring the truncation error, we can approximate the kernel as

K(x,xj) =

N∑
n=1

λnϕn(x)ϕn(xj).

Therefore the interpolant s
f

becomes

s
f
(x) =

N∑
j=1

cj

N∑
n=1

λnϕn(x)ϕn(xj) = VT
Φ(x) ΛN ΦX c,

where VT
Φ(x) = (ϕ1(x), . . . , ϕN (x)),

ΛN =

 λ1 0
. . .

0 λN

 , and ΦX =

 ϕ1(x1) · · · ϕ1(xN )
...

...
ϕN (x1) · · · ϕN (xN )

 .
In the same manner as in [4, 20], we can show that

s
f
(x) = VT

Φ(x) Φ−TX f . (2.2)

For small values of the Gaussian shape parameter ε, the eigenvalues λn decrease to-
ward zero [18] rapidly, and this causes the system to become ill-conditioned. So that
ΛN , which depends on eigenvalues, is eliminated. We can conclude that one of the
source of ill-conditioning is removed.

We consider the one-dimensional Gaussian RBF, which is a positive definite kernel.
Based on Mercer’s theorem

e−ε
2(x−z)2

=

∞∑
n=1

λnϕn(x)ϕn(z),
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where the ϕn are orthogonal functions with respect to the weight function ρ(x) =
α√
π

e−α
2x2

,

ϕn(x) =
√
βe−δ

2x2

H̃n−1(αβx), (2.3)

and H̃n(x) are normalized Hermite polynomials (see [7, 20]). Also

β =

(
1 +

4ε2

α2

) 1
4

, δ2 =
α2

2
(β2 − 1),

and the eigenvalues λn are given by

λn =

√
α2

α2 + ε2 + δ2

(
ε2

α2 + ε2 + δ2

)n−1

, n = 1, 2, . . . .

By using (2.3), the vector function VΦ(x) and the matrix ΦX can be decomposed as

VΦ(x) =
√
β e−δ

2x2

VH(x), (2.4)

and

ΦX =
√
β HX DX , (2.5)

where

VH(x) =

 H̃0(αβx)
...

H̃N−1(αβx)

 , HX =

 H̃0(αβx1) · · · H̃0(αβxN )
...

...

H̃N−1(αβx1) · · · H̃N−1(αβxN )

,
and

DX =

 e−δ
2x2

1 0
. . .

0 e−δ
2x2

N

.
Since the Hermite polynomials values can grow dramatically, the algorithm for eval-
uation of Gaussian RBFs can become unstable. Therefore in the following we show
that the eigenfunctions can be rebuilt according to any other orthogonal polynomi-
als, like Chebyshev polynomials, which are more stable for numerical computation.
Let {pn(x)}∞n=0 be a family of polynomials, since {p0, · · · , pn} is a basis for πn (the

space of all polynomials of degree at most n), H̃n(αβx) can be presented as a linear
combination of its members as follows:

H̃n(αβx) =

n∑
k=0

cn,kpk(x), (2.6)

so 
H̃0(αβx)

H̃1(αβx)
...

H̃
N−1

(αβx)

 =


c

00

c
10

c
11

0
...

...
. . .

c
N−1,0

c
N−1,1

· · · c
N−1,N−1




p0(x)
p1(x)

...
p

N−1
(x)

 .
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The above formula can be written in matrix-vector form as VH(x) = C Vp(x) and
consequently HX = C PX where

PX =

 p0(x1) · · · p0(xN )
...

...
p

N−1
(x1) · · · p

N−1
(xN )

,
is a polynomial Vandermonde-type matrix [5, 12].

Therefore, from the relations (2.2), (2.4), and (2.5), we have

s
f
(x) =

√
β e−δ

2x2

VT
H(x)

1√
β

H−TX D−1
X f

= e−δ
2x2

VT
p (x) CT C−T P−TX D−1

X f

= e−δ
2x2

VT
p (x) P−TX D−1

X f ,

so we rebuild eigenfunctions according to pn(x), consequently we rebuild ϕn(x) as

ϕn(x) =
√
βe−δ

2x2

pn−1(x).

Now we can generalize the above discussion for two-dimensional interpolation for-
mula for f : [a, b]× [c, d]→ R. Let Y = {y1, · · · , yM} be a set of arbitrary grid points
on [c, d] and Ω̄ := X ×Y = {(xi, yj) : i = 1, 2, · · · , N, j = 1, 2, · · · ,M} be the tensor
product grid points on [a, b]× [c, d]. By using the tensor product form of the Gaussian
kernel, we have

sf (x, y) =

N∑
j=1

cj

N∑
n=1

M∑
m=1

λmλnϕn(x)ϕn(xj)ϕm(y)ϕm(yj),

where

ϕm(y) =
√
β e−δ

2y2

pm−1(x), m = 1, · · · ,M, y ∈ [c, d].

Just as in [20], we can show that

sf (x, y) = VT
Φ(x) Φ−TX F Φ−1

Y VΦ(y), (2.7)

where

F =

 f(x1, y1) · · · f(x1, yM
)

...
...

f(xN , y1
) · · · f(x

N
, y

M
)

 .
Similarly, by using (2.4) and (2.5), we can decompose VΦ(y) and ΦY as

VΦ(y) =
√
β e−δ

2y2

VP (y),

and

ΦY =
√
β PY DY .
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By these decompositions, the formula (2.7) can be obtained as:

sf (x, y) = e−δ
2(x2+y2) VT

P (x) P−TX F̄ P−1
Y VP (y), (2.8)

where F̄ = D−1
X F D−1

Y .

Remark 1. Up until now the polynomials pn were arbitrary. In particular we can,
use Chebyshev polynomials (also shifted Chebyshev polynomials) instead of Hermite
polynomials. Therefore, in this paper, when we approximate f : [a, b]→ R by Gaussian
RBFs, the ϕn(x)’s are modified as

ϕn(x) =
√
β e−δ

2x2

T̂n−1(α1x+ α2), x ∈ [a, b],

where

T̂n(x) =


2√
N
, n = 0,√

2
N Tn(x), n ≥ 1,

and the parameters α1, α2, which control the Chebyshev polynomials, can be chosen
arbitrary. While if we choose α1 = 2

b−a , α2 = −a+b
b−a , then the shifted Chebyshev

polynomials become bounded such that |Tn(α1 x+ α2)| ≤ 1 for x ∈ [a, b].

3. Implementation of the method

In this section, we want to solve two dimensional Helmholtz equation (1.1) on
Ω = [a, b] × [c, d] by a collocation method based on Gaussian eigenfunctions. The
boundary conditions (1.2) can be considered as

α1u(a, y) + β1ux(a, y) = h1(a, y),

α2u(b, y) + β2ux(b, y) = h2(b, y),

α3u(x, c) + β3uy(x, c) = h3(x, c),

α4u(x, d) + β4uy(x, d) = h4(x, d),

(3.1)

Suppose that the approximate solution of (1.1) is

U(x, y) = VT
Φ(x) Φ−TX U Φ−1

Y VΦ(y), (3.2)

where [U]ij = U(xi, yj). For solving the equation and illustrating the algorithm, it is
necessary to decompose and rearrange the matrix U as

U =


u

11
u

1M
u

12
· · · u

1,M−1

u
N,1

u
N,M

u
N2

· · · u
N,M−1

u
21

u
2,M

u
22

· · · u
2,M

...
...

...
. . .

...
u

N−1,1
u

N−1,M
u

N−1,2
· · · u

N−1,M−1

 =

[
Ucor
B Urow

B
Ucol
B UI

]
.
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In fact, we decompose U to four matrices Ucor
B , Urow

B , Ucol
B , UI which are the four

corners, the up and down boundaries, the left and right boundaries, and the interior
entries of U, respectively. We should mention that it is necessary to rearangement
the other matrices in the formula (3.2) as U, to avoid deformation of that. For the
Dirichlet boundary conditions, all of the entries along the boundary of the matrix U
are known, so it is necessary to obtain only UI by simplifying the equation with some
matrix algebraic operations. For the Neumann boundary conditions, the problem be-
comes a little complicated.

Collocating the equation at the interior points and using the boundary data at the
boundary points leads to the following system of equations

V′′
T

Φ (xi) Φ−TX U Φ−1
Y VΦ(yj) + V

T

Φ(xi) Φ−TX U Φ−1
Y V′′Φ(yj)

+ k2 U = f(xi, yj), (3.3)

for 1 < i < N, 1 < j < M , associated with boundary conditions

α1u(x1, yj) + β1ux(x1, yj) = h1(x1, yj),

α2u(xN , yj) + β2ux(xN , yj) = h2(xN , yj), i = 2, · · · , N − 1,

α3u(xi, y1) + β3uy(xi, y1) = h3(xi, y1),

α4u(xi, yM ) + β4uy(xi, yM ) = h4(xi, yM ), j = 1, · · · ,M.

(3.4)

By denoting the following

Ψ̃T
X =

 V′′
T

Φ (x2)
...

V′′
T

Φ (x
N−1

)

 , Φ̃Y =
[

VΦ(y2) · · · VΦ(y
M−1

)
]
,

and A = [aij ] = Ψ̃T
X Φ−TX , we consider the first term on the left-hand side of (3.3).

In the same manner as in [20] we can show that

Ψ̃T
X Φ−TX U Φ−1

Y Φ̃Y

=


a1,1 a1,N

a2,1 a2,N

...
...

a
N−2,1

a
N−2,N


︸ ︷︷ ︸

=AB

[
u1,2 u1,3 · · · u1,M−1

u
N,2

u
N,3

· · · u
N,M−1

]
︸ ︷︷ ︸

=U
row
B
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+


a1,2 · · · a1,N−1

a2,2 · · · a2,N−1

...
...

aN−2,2 · · · aN−2,N−1


︸ ︷︷ ︸

=AI

 u2,2 u2,3 · · · u2,M−1

...
...

...
u

N−1,2
u

N−1,3
· · · u

N−1,M−1


︸ ︷︷ ︸

=UI

. (3.5)

Using the first two boundary conditions, we have[
α1 0
0 α2

]
︸ ︷︷ ︸

=α12

 U
row

1

U
row

N

+

[
β1 0
0 β2

]
︸ ︷︷ ︸

=β12

Ã U =

[
h1(x1, y1) · · · h1(x1, yM

)
h2(x

N
, y1) · · · h2(x

N
, y

M
)

]
,

where

Ã =

 V′
T

Φ(x1)

V′
T

Φ(x
N

)

 Φ−TX .

therefore

α12

[
U

cor

B |U
row

B

]
+ β12 Ã U =

[
H

cor

|H
row
]
.

Now by decomposing Ã and U, we want to obtain U
row

B and U
cor

B , in fact

Ã U =
[

ÃB ÃI
] [ Ucor

B Ũrow
B

Ucol
B UI

]
=

[
ÃB Ucor

B + AI Ucol
B ÃB Urow

B + ÃI UI .
]

Now by using two above equations

α12 U
cor

B + β12

[
ÃB Ucor

B + ÃI Ucol
B

]
= H

cor

,

and

α12 U
row

B + β12

[
ÃB Urow

B + ÃI UI

]
= H

row

.

So by denoting K1 = α12 + β12 ÃB, we have

U
cor

B = K−1
1

[
Hcor − β12 ÃI Ucol

B

]
, (3.6)

and

U
row

B = K−1
1

[
Hrow − β12 ÃI UI

]
. (3.7)

Now by denoting

Φ̃T
X =

 VT
Φ(x2)

...
VT

Φ(x
N−1

)

 , Ψ̃Y =
[

V′′Φ(y2) · · · V′′Φ(y
M−1

)
]
,
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and B = [bij ] = Φ−1
Y Ψ̃Y , we can similarly obtained

Φ̃T
X Φ−TX U Φ−1

Y Ψ̃Y =


u2,1 u2,M

u3,1 u3,M

...
...

uN−1,1 uN−1,M


︸ ︷︷ ︸

=Ucol
B

[
b1,1 b1,2 · · · b1,M−2

bM,1 bM,2 · · · bM,M−2

]
︸ ︷︷ ︸

=BB

+

 u2,2 u2,3 · · · u2,M−1

...
...

...
uN−1,2 uN−1,3 · · · uN−1,M−1


︸ ︷︷ ︸

=UI

 b2,1 b2,2 · · · b2,M−2

...
...

...
bM−1,1 bM−1,2 · · · bM−1,M−2


︸ ︷︷ ︸

=BI

,(3.8)

and

U
col

B =
[
Hcol −UI B̃I β34

]
K−1

2 , (3.9)

where K2 = α34 + B̃B β34.

Now, by substituting (3.7) in (3.5), and (3.9) in (3.8), we obtain the following
Sylvester system

A UI + UI B + C = 0, (3.10)

where

A = AI +
k2

2
I,

B = BI +
k2

2
I,

C = AB Grow
B + Gcol

B BB − F̃,

and [F̃]i,j = f(xi, yj), i = 2, · · · , N, j = 2, · · · ,M .

The equation (3.10) can be solved in Matlab by using the command sylvester,
which first transforms the A and B matrices to complex Schur form, then computes
the solution of the resulting triangular system and finally transforms the solution back.

After solving (3.10), UI will be obtained (the solution in interior points), then by
using (3.7) and (3.9), Urow

B and Ucol
B will be obtained, and finally by using (3.6), Ucor

B
will be obtained. Also by using (3.2), we can obtain a closed form solution for the
Helmholtz equation.

4. Numerical Results

In this section, several numerical experiments are reported to illustrate the accuracy
and efficiency of the proposed approach to solve two-dimensional Helmholtz equations.
The numerical experiments are performed in Matlab 2014 on PC computer with an
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Table 1. The local and global error for different values of grid points
for Example 1.

N ×M Uniform points Chebyshev points

Local error Global error Local error Global error

11× 11 3.79× 10−02 4.02× 10−01 3.09× 10−04 1.42× 10−02

13× 13 1.97× 10−03 1.72× 10−02 5.84× 10−06 2.99× 10−05

15× 15 5.14× 10−05 3.85× 10−04 6.20× 10−08 3.41× 10−06

17× 17 3.72× 10−07 2.45× 10−06 2.12× 10−10 1.33× 10−08

19× 19 1.40× 10−08 7.98× 10−08 2.21× 10−12 1.03× 10−10

21× 21 3.25× 10−09 3.37× 10−08 1.38× 10−13 1.37× 10−12

23× 23 1.78× 10−07 7.22× 10−07 1.43× 10−13 8.47× 10−13

Intel(R) Core(TM) i5-4460 processor (3.20GHz CPU), a 64-bit Windows 7 operating
system, and a 16 GB internal memory . In all examples, we used ε = 1, α = 1.9 and
we used uniform grid points and Chebyshev collocation points.

The accuracy is measured by computing the local and global error of

‖u− U‖
∞,Ω̄

= max |u(xi, yj)− Ui,j |
(xi,yj)∈Ω̄

,

and

‖u− U‖
∞,Ω

= max |u(x, y)− U(x, y)|
(x,y)∈Ω

,

where the second norm is approximated on 300×(b1−a1+b2−a2) evenly spaced points.

Example 1. Consider the following two-dimensional Helmholtz equation
∂2u(x,y)
∂x2 + ∂2u(x,y)

∂y2 + 9π2 u(x, y) = −9π2 sin(3πx) sin(3πy), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω

where Ω = [0, 1] × [0, 1] and the exact solution is u(x, y) = sin(3πx) sin(3πy). We
applied our method to this example with different values of uniform and Chebyshev
grid points. The arrising Sylvester system can be solved and the numerical solution
of this example can be obtained. The local and global errors are tabulated in Table 1.
Also, absolute error has been plotted for 17× 17 space grid points in Figure 1. From
the data in Table 1 we can see that Chebyshev grid points yield a smaller error than
uniform grid points.
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Figure 1. Error with the 17 × 17 uniform grid point (left) and
Chebyshev grid points (right) for Example 1.
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Example 2. Consider the following two-dimensional Helmholtz equation from [15]

∂2u(x,y)
∂x2 + ∂2u(x,y)

∂y2 + 2u(x, y) = 2x− 4y, in Ω = [0, 1]× [0, 1]

uy(x, y) = h2(x, y), on Γ2 = [0, 1]× {0}

u(x, y) = h1(x, y), on Γ1 = ∂Ω\Γ2

where the exact solution is u(x, y) = sin(
√

3x) sinh(y) + cos(
√

2y) + x − 2y, and
h1(x, y), h2(x, y) are chosen so as comply with the exact solution. The solution of
this equation is obtained by solving the Sylvester system of (3.10). We use uniform
and Chebyshev grid points. In Table 2, the local and global errors are shown for
different values of uniform and Chebyshev grid points. In Figure 2, absolute error
is shown as function of N for Chebyshev grid points. It can be seen that spectral
convergence can be achieved for N ≤ 16. For larger N , by using higher precision,
like Multiprecision Computing Toolbox by ADVANPIX, spectral convergence can be
obtained. Also in Figure 3, the absolute error is plotted versus the number of grid
points (N ×M) for our method and traditional MQ RBf method. Superiority of our
method with respect to traditional MQ RBf method is clear.
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Table 2. The local and global error for different values of grid points
for Example 2.

N ×M Uniform points Chebyshev points

Local error Global error Runtime Local error Global error Runtime

11× 11 4.37× 10−05 1.89× 10−02 0.1824 1.34× 10−04 1.74× 10−03 0.1895

13× 13 1.39× 10−06 4.12× 10−04 0.1813 1.79× 10−06 1.76× 10−05 0.1937

15× 15 8.45× 10−08 1.09× 10−05 0.1776 2.96× 10−08 1.75× 10−07 0.1865

17× 17 3.32× 10−09 5.94× 10−07 0.1779 4.94× 10−10 3.37× 10−09 0.1910

19× 19 1.69× 10−09 2.06× 10−08 0.1804 8.10× 10−12 4.94× 10−11 0.1927

21× 21 2.56× 10−09 9.37× 10−09 0.1795 3.81× 10−13 2.33× 10−12 0.1953

23× 23 6.71× 10−08 1.38× 10−08 0.1875 1.43× 10−12 8.68× 10−12 0.1905

Figure 2. Absolute errors as function of N for Chebyshev grid
points for Example 2.

5 10 15 20
10−14

10−12

10−10

10−8

10−6

10−4

10−2

N

ab
so

lu
te

 e
rr

or

Local Error
Global Error

5. Conclusion

This paper enhanced a stable method based on an eigenfunction expansion of the
Gaussian RBF which is applied to solving two-dimensional Helmholtz equations. The
eigenfunction expansions are rebuilt based on Chebyshev polynomials which are more
suitable in numerical computation. After discretization of the equation, we obtain a
Sylvester system and solve it. Employing the Chebyshev basis allows our approach
to become accurate and stable. Moreover, the two-dimensional formula (3.2) which is
presented in [20] reduces the computational complexity for solving two-dimensional
Helmholtz equations.
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Figure 3. Absolute errors as function of N for Chebyshev grid
points for Example 2.
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