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Abstract Usually mathematicians use Hodgkin-Huxley model or FitzHugh-Nagumo model to
simulate action potentials of skeletal muscle fibers. These models are electrically
excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal

muscle fibers we use a model with six ordinary differential equations. This dynamical
system is sensitive to initial value of some variables so it is more realistic. Studying
qualitative behavior and propagation of action potential through a cell with this
model is time consuming .In this paper we try to use properties of variables of this

model to reduced dimension of this dynamical model. We study qualitative behavior
of obtained model and illustrate that this new model treats like the original model.
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1. Introduction

Mathematical models have been used to study different properties of biological
events like infectious disease, membrane action potential, population growth and so
on.

In this paper we focus on studying membrane action potential. The majority of
researches in this field are about action potential in neurons [1, 7, 10]. Forasmuch
as skeletal muscle cells are the body’s engine analysis of their features is important;
So we focus on these kind of cells. The Huxley model and the Hill model are two
famous model describing contraction features in muscle fibers. Despite lots of other
mathematical models have been proposed based of these two models for simulating
contraction of skeletal muscle fibers [6, 8, 14], few studies have been done on features
of their membrane action potential.

Since an action potential is the beginning of the process of muscle contraction we
think that studying this aspect of muscle is as important as muscle contraction. In
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this paper, we investigate a mathematical model which describes an action potential
changes in a skeletal muscle fibers. We try to reduce the number of equations when
preserving dynamical behavior of the system. In this way we first explain what
happens during an action potential after that we introduce the model.

Each cell has a membrane that like a boundary separates the internal of the cell
from its external environment. More importantly, it is selectively permeable. That
means it allows passage of specific ions. Both the intracellular and extracellular en-
vironments consist of, Among many other things, Na+, K+ and Cl− ions. Different
ionic concentration between inside and outside of a cell membrane leading to the po-
tential difference across the membrane. This potential difference is called membrane
potential, and will change during an action potential. All cells are divided into two
categories: excitable, and non-excitable. If a chemical or electrical or mechanical
stimulus leads to sudden changes in membrane potential, that cell is called an ex-
citable, otherwise it is non excitable. Neurons, skeletal muscles, and cardiac cells are
examples of excitable cells.

A skeletal muscle is made up of individual muscle fibers. Muscle fibers are arranged
in parallel between the tendon ends. Each muscle fiber is a single, long, and cylindrical
cell, which is surrounded by a cell membrane. This membrane is called sarcolemma [5].
Skeletal muscle fibers are stimulated by nerve fibers. There is neuromuscular junction
at the end of each nerve fiber which connects it to the midpoint of the muscle fiber.

When an impulse reaches the neuromuscular junction acetylcholine releases from
the terminal into the synaptic space. There are very small acetylcholine receptors
on the gated ion channels in a muscle fiber membrane which acetylcholine attaches
them and opens ion channels. Mostly sodium ions can pass through these channels.
Chloride, and potassium ions cannot pass because of potential, and concentration
gradient. From these opened channels large number of sodium ions go into the fiber.
This cause a local positive charge inside the muscle fiber membrane, called the end
plate potential. The end plate potential initiates an action potential that spreads
along the muscle membrane and causes muscle contraction [4].

It is common to use Hodgkin and Huxley model (HHM) for simulating action
potential in a muscle fiber. Hodgkin and Huxley were the first scientists who provided
a model for action potential changes in a giant neuron based on the flow of sodium
and potassium ions [1, 7, 8]. They added a leak current instead of the Na − K
pump, chloride, and inward rectifier potassium currents. The HHM is stimulated by
electrical current, but as we mentioned before in skeletal muscle fibers acetylcholine,
which is a chemical stimulator, leads to open sodium channels, so the original HHM
model is not a realistic model for muscle fibers because it is not sensitive to the initial
values of variables. We should use a model that is sensitive to the initial value of
sodium gates.
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In paper [13], Wallinga et al. studied action potential of mammalian skeletal muscle
fibers using following system:

dV
dt = −ĝNam

3hS(V − ENa)− ĝKn4hK(V − EK)− I,
dm
dt = αm(V )(1−m)− βm(V )m,
dn
dt = αn(V )(1− n)− βn(V )n,
dh
dt = αh(V )(1− h)− βh(V )h,
dS
dt = S∞−S

τS
,

dhK

dt =
hK∞−hK

τhK
,

(1.1)

where 

I = gIR(V − EIR) + gCl(V − ECl) + INaK ,
gCl = ĝCla

4,
gIR = ĝIRy,

y = 1− [1 + 1
[S]2i e

2(1−δ)V F/RT (1 +
[K]2R
KK

)]−1,

[K]R = [K]oe
−δEKF/RT ,

INaK = ÎNaKf(V ),

ÎNaK = FĴNaK

(1+KmK/[K]+o)2(1+KmNa/[Na]i)3
,

f(V ) = (1 + 0.12e−0.1V F/RT + 0.04σe−V F/RT )−1,
σ = 1

7 (e
[Na]o/67.3),

a = 1

1+e
V −Va
Aa

,

αn(V ) = α̂(V−Vn)

1−exp
−(V −Vn)

Kαn

,

βn(V ) = β̂n exp(
−(V−Vn)

Kβn
),

αm(V ) = α̂m(V−Vm)

1−exp
−(V −Vm)

Kαm

,

βm(V ) = β̂m exp(−(V−Vm)
Kβm

),

αh(V ) = α̂h exp(
−(V−Vh)

Kαh
),

βh(V ) = β̂h

1+exp
−(V −Vh)

Kβh

,

τs =
60

0.2+5.65(V +90
100 )2

,

τhK
= exp−(V+40)

25.75 ,
hK∞ = 1

1+e

V −VhK
AhK

,

S∞ = 1

1+e
V −VS
AS

.

(1.2)

This system is sensitive to the initial value of some variables [12]. Just like the
HHM m,h, and n are sodium activation and inactivation gates and potassium gate
respectively, and V describes potential differences. Since skeletal muscle fibers are
slower than neurons, then two slow variables S (for sodium channel), and hK (for
potassium channel) are added to the HHM; Moreover, inward rectifier potassium
current and sodium-potassium pump current are added. This model is in accordance
with experimental data. For more details about this model and parameters, you can
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Figure 1. Rigth–hand side: An action potential for end plate in
a muscle fiber, Left– hand side diagram shows how gate variables
change as time goes on.
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see [13, 2, 3].
Given that this system contains lots of parameters and complicated mathematical
relationships, studying its mathematical feature will be difficult. In this paper, we
try to study the dynamical behavior of variables and use their properties to introduce
a reduced dynamical model. We study the qualitative behavior of obtained model,
and illustrate that our model treats like the original model (1.1). Since our proposed
model has fewer differential equations respect to the original model, studying its
quality behavior will be much easier than the original one.

2. Describing the reduced model

One single end plate action potential for system (1.1) is as shown in Figure 1. When
acetylcholine opens enough channels, sodium ions go into the cell, and potential goes
up therefor there will be a spike. In other words, if m0 and h0, which are initial values
for activation and inactivation sodium gates are more than a threshold we can see a
spike. From now on we just tell potential instead of end plat action potential. In
this section, we want to find a reduced system that acts just like the system (2.3).
Let’s start with current I. Definition of this current contains lots of parameters and
complex mathematical relationships. In this part, we try to replace a new easier
current with the same behavior instead of I. To study the behavior of current I, we
plot Na-K pump current pulse chloride, and inward rectifier potassium currents in
terms of V in Figure 2. As you can see in this figure, the current is almost linear
about V , with a positive slope until V = 69.1. At this point, it goes down very fast
until V = 76.5, after that it again increases. We approximate these three almost
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Figure 2. Right–hand side:Current I as a function of potential, Left
side: Action potential for system (1.1) before and after replacing Î
instead of I.
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linear relationships with Î which is defined as follows:

I ≃ Î =

 10.25V + 812.57, V < 69.1,
−261V + 20235, 69.1 ≤ V < 76.5,
3.65V + 306.25, V ≥ 76.5.

(2.1)

The efficiency of this approximation is shown in Figure 2. In this figure, you can see
clearly that the replacement of the (2.1) preserves dynamical behavior of the original
model (1.1). Potential is almost equal in both cases and their mean difference is less
than 0.28. Therefor with this replacement we have a system with fewer parameters
respect to the original model, but with the same qualitative behavior. Our next goal
is reducing the number of equations. For this purpose, we peruse dynamical behavior
of variables. In Figure 1-b you can see how variables change as time goes on. During
the time that n increases hk is almost zero. When hk starts to increase n decreases,
so the product of these two variables is always low. Due to the fact that the flow of
potassium is product of fourth power of n and first power of hk maybe we can omit
the potassium current from system (1.1).

To verify effects of potassium current on action potential we alter different param-
eters related to potassium current and show how maximum amount of potential and
critical point change and draw results in Figure 3. As it is obvious in this figure dif-
ferent amount of [k]in, [k]out, and ĝk do not change the maximum amount of potential
and rest potential(critical point).

Moreover, if we define ratio of length of each current interval to each other as
follows

rIi,Ij = |MaxIi −MinIi
MaxIj −MinIj

| i, j = Na,K, cl, ... (2.2)
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Figure 3. Altering potassium current parameters, first row: [K]Out,
second row: ĝh, and third row:[K]in. right side: effects on the critical
point, left side: effects on maximum end plate potential.
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|rIk,Î | <
0.25

1600
< 1.6× 10−4.



48 S. SHAHI AND H. KHEIRI

Since this ratio is very low and because of discussions conducted in the last two
paragraphs, we can eliminate potassium current. Figure 4 shows the action potential
for system (1.1) before and after this elimination. These two diagrams almost coincide
and their mean differences are less than 0.07; So the action potential is almost the
same for original and reduced models.

Figure 4. Action potential for system (1.1) with and without potas-
sium current.
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Now if you look carefully to the Figure 5. you can see that variable S is almost
unchanged after t = 1. Since the variable S is really slow we can replace it with a
fixed value. This value is only dependent on initial value of S. Let S = 0.95S0, where
S0 is the initial value of S(t). Replaceing it in the original system instead of S(t) will
simplify the original system and reduces its dimension.

Figure 5. S(t) is ploted for three different initial values.
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Figure 6. Action potential for system (1.1) and (2.3): Left hand
side diagram for S0 = 0.2, right hand side diagram for S0 = 0.5.
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Now we apply all of these simplifications to the system (1.1) to have a new reduced
system as follows:

dV
dt = −0.95S0gNam

3h(V − ENA)− Î ,
dm
dt = αm(V )(1−m)− βm(V )m,
dh
dt = αh(V )(1− h)− βh(V )h.

(2.3)

This new system has three equations, and the number of its parameters is less than
(1.1). In Figure 6. we compare action potential changes in the system (1.1) with (2.3).
This figure is plotted for different initial values of S. In this figure, red diagrams are
corresponding to voltage changes for the system (1.1) and green ones show changes
in voltage for the reduced system (2.3). The mean difference of potential between
these two systems is less than 0.34. Since the behavior of the action potential of both
systems is similar, and dimension of the system (2.3) is less than system (1.1), the
former system (2.3) is a perfect choice for studying the qualitative behavior of skeletal
muscle cells. It is easier to study critical points, bifurcation and propagation action
potential and other dynamical behavior of the reduced dynamical system; Besides
discussing all of the different properties in the reduced system needs less time and
memory space for processing.

3. Qualitative behavior of the reduced system

In this section, we will find critical points of the system(2.3). In this way, we let
S0 = 0.2,m0 = 0.7 and h0 = 0.7 and discuss the critical point in this particular case
then we analyze the system in general.

One way to find critical points of the system (2.3) is putting second and third
equations in the system (2.3) equal to zero to find a relationship between m, and V
and between h and V as follows:

X∞(V ) =
αx(V )

αX(V ) + βX(V )
, where X = m,h. (3.1)
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By replacing (3.1) in the first equation of (2.3) we have

dV

dt
= G(V ) = −0.95S0gNam

3
∞h∞(V − ENA)− Î . (3.2)

If we can find V ∗ such that G(V ∗) = 0 then the point (V ∗,m∞(V ∗), h∞(V ∗)) will be
a critical point for system (2.3). We plot diagram of G(V ) in Figure 7. As you can
see this function has only one root in an interval that is physiologically justified; As
a result system (2.3) has only one explainable critical point when h0 = 0.7,m0 = 0.7
and S0 = 0.2. To analyze the stability of this point we use Routh-Hurwitz criterion.

Figure 7. Diagram of G(V ).
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The Routh-Hurwitz Criterion. Consider the polynomial

P (λ) = λn + an−1λ
n−1 + ...+ a1λ+ a0. (3.3)

Roots of P (λ) have negative real parts if and only if

det(Hj) > 0 for j=1...n,

where,

H1 = an−1, H2 =

(
an−1 1
an−3 an−2

)
,H3 =

 an−1 1 0
an−3 an−2 an−1

an−5 an−4 an−3

 . (3.4)

For more details see [1].
To apply this criterion to the system (2.3) we should linearize system about its critical
point and then evaluate characteristic polynomial for it. Let S0 = 0.2 and h0 = 0.7,
so we have

A =

 −10.2509 9.86 0.433
0.080 −25.74 0
−0.004 0 −0.1050

 (3.5)

pA(λ) = −λ3 − 36.1λ2 − 266.85λ− 2316. (3.6)

By applying Routh-Hurwitz Criterion, we have

H1 = 36.1, det(H2) = 9656.445.



CMDE Vol. 7, No. 1, 2019, pp. 42-53 51

Figure 8. Position of critical point: a) let S0 = 0.5 and m0 = 0.7
and altering h0, b) let s0 = 0.5 and h0 = 0.7 then altering m0, c) let
s0 = 0.5 and altering m0 and h0.
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Since H1 and det(H2) are positive then real parts of eigenvalues are negative, thus
critical point is stable when S0 = 0.2,m0 = 0.7 and h0 = 0.7. To evaluate the effect of
S0,m0 and h0 on qualitative behavior of critical point we can plot diagram of critical
point as a function of initial values. Figure 8. shows the sensitivity of critical point
to initial values of h, and m. Clearly, in both cases the critical point remains stable;
Moreover, its position changed a little and remains in the interval [−79.26.,−79.20].
The same story happens for the initial value of S.

At this point, we show that unlike the critical point, maximum amount of potential
is sensitive to initial values. As it is obvious in Figure 9. maximum amount of this
potential alters in a range between −80 and 50. When it is around -80 it means that
there is no spike in those initial values. It means that if acetylcholine opens activation
and inactivation sodium gated channels less than a certain value potential will stay
near critical or rest point.
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Figure 9. Maximum amount of potential in three different cases:
a) fixed s0 = 0.5 and m0 = 0.7 and altering h0, b) fixed s0 = 0.5 and
h0 = 0.7 and altering m0, c)fixed m0 = 0.7 and h0 = 0.7 and altering
s0. d) fixed s0 = 0.5 and ltering h0 and m0.
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4. Conclusion

In this paper, we studied a mathematical model for skeletal muscle fibers which
was used by Wallinga, et al. We found that some of the variables in the model are
omissible. According to this, we introduced a new reduced model with three variables
and fewer parameters respect to the original model.We studied some properties of the
new system. With some computational methods, we determine that critical point of
the system is stable. Despite the simplicity of the presented model, we illustrated
that it is as efficient as the original model in studying the qualitative behavior of the
action potential.
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