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Abstract In this paper, an effective procedure based on coordinate stretching and radial ba-
sis functions (RBFs) collocation method is applied to solve singularly perturbed
differential-difference equations with layer behavior. It is well known that if the
boundary layer is very small, for good resolution of the numerical solution at least
one of the collocation points must lie in the boundary layer. In fact, a set of uniform
centers is distributed in the computational domain, and then coordinate stretching
based transform is used to move the centers, to the region with high gradients. In
addition to the integrated multiquadric (MQ) collocation method is applied to solve
the transformed equation. The effectiveness of our method is demonstrated on sev-
eral examples with boundary layer in both cases, i.e., boundary layer on the left side
as well as the right side.

Keywords. Differential-difference equation, Boundary layer, Multiquadric collocation method, Radial ba-
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1. Introduction

Singularly perturbed differential-difference equations have arisen in many fields
such as in the study of an optically bistable device [1] and in a variety of models for
physiological processes or diseases [13, 24]. Such type of problems also appear in the
description of the so-called human pupil light reflex [12] and variational problems in
control theory [6], where they provide the best and in many cases the only realistic
simulation of the observed phenomena. Boundary value problems (BVPs) involving
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differential-difference equations also arise in mathematical models of neuronal vari-
ability [21]. The theory and numerical solution of singularly perturbed differential-
difference equations are still at the initial stage. In [20] Kolloju Phaneendra et al.
presented a numerical method to solve boundary value problems for singularly per-
turbed differential difference equations with negative shift. Let us consider the follow-
ing boundary-value problem for a class of singularly perturbed differential-difference
equations

εy′′(x) + p(x)y′(x − δ) + q(x)y(x) = f(x), ∀x ∈ (0, 1), (1.1)

y(x) = ω(x) on − δ ≤ x ≤ 0, (1.2)

y(1) = γ, (1.3)

where ε is a small parameter, 0 < ε ≪ 1 and δ is also small shifting parameter, p(x),
q(x) and f(x) are smooth functions and γ is a constant. If a function y(x) is a smooth
solution to the problem (1.1)-(1.3), then it must satisfy (1.1)-(1.3), be continuous on
[0,1] and be continuously differentiable on (0,1).

The boundary value problems for the above class of singularly perturbed differential
difference equations contain delay only in the first-order derivative term. For δ = 0,
the problem (1.1)-(1.3) is converted into a boundary value problem for the singularly
perturbed ordinary differential equation. The reduced problem corresponding to the
singularly perturbed differential equation (1.1)-(1.3), obtained by setting ε = 0 in the
problem, for δ = 0 is the equation p(x)y′(x) + q(x)y(x) = f(x).

Note that the resolution of the reduced problem satisfy both arbitrary preassigned
boundary conditions simultaneously at the boundary points, due to the order of the
differential equation will be reduced for one unit. Accordingly, the solution y(x) shows
boundary layer, i.e., regions of rapid change in the solution near the one of the end
points relying on the sign of p(x). Furthermore, the layer is maintained for δ 6= 0 but
sufficiently small.

In this paper, we consider both cases, where the boundary layer is either on the
left side or on the right side of the interval [0,1].

It is well known that the standard discretization methods for solving singular per-
turbation problems are unstable and fail to give accurate results for small values of
the perturbation parameter ε. Hence, it is interesting to construct new numerical
tolls for this purpose.

During the last decade, researchers have tried to develop a group of meshless or
meshfree methods which are based on radial basis function (RBFs) [4, 11, 2]. In par-
ticular, the radial basis function collocation method is one of the attractive meshless
methods. In 1990, Kansa [9] proposed the use of RBFs for the numerical solution of
the Navier-Stokes equations. Since then, RBFs have been used to solve a variety of
ordinary and PDEs.

In the present paper, we employ RBFs to solve boundary value problem (1.1)-(1.3).
Our solution method is based on an integral formulation of multiquadric collocation.
Integration is a smoothing operation, so the convergence rate may be expected to
accelerate in line with the convergence rate estimates of Madych and Nelson [14, 16].
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Further applications of the RBF integral formulation can be found in Mai-Duy and
Tran-Cong [17, 18], and Kansa et al. [10]. When we solve (1.1)-(1.3) with a collocation
method, there are a number of difficulties associated in its use. Especially with very
small parameter ε, large N is required to obtain accurate solution.

In addition, ill-conditioning of the corresponding differentiation matrices with in-
creasing N frequently causes degradation of the observed precision. For a good reso-
lution of the numerical solution, at least one of the collocation points must lie in the
boundary layer. If ε ≪ 1 and problem possesses a boundary layer of width O(ε), then
on a uniform grid with O(N−1) spacing between the points we need N = O(ε−1),
which is not practical in most cases. Therefore, most numerical methods use spe-
cially designed grids that contain more points in and around the layer(s). For in-
stance, Miller et al. [19] developed a successful upwind central difference scheme on
a piecewise uniform mesh. Gartland [5] and Vulanovic̀ [23] suggested exponentially
distributed grid points. The multiquadric (MQ) Radial Basis Function (RBF) inter-
polation method was developed in 1968 by Iowa State University Geodesist Roland
Hardy who described and named the method in a paper [7] that appeared in 1971.

It was not recognized by most of the academic researchers until Franke [3] published
a review paper in the evaluation of two-dimensional interpolation methods. The main
advantage of this type of approximation is that it works for arbitrary geometry with
high dimensions and it does not require a mesh at all.

In this paper, we combine the transformation technique with the MQ integral
formulation for solving (1.1)-(1.3). The rest of this paper is organized in what follows.
The transformation required to solve such problems is discussed in section 2 while in
sections 3-4 are dedicated to the derivation of our main numerical procedure. In
section 5, we provide an error estimation. Numerical experiments and results are
discussed in section 6-8. Finally, a conclusion of the paper will be drawn in section 9.

2. Transformation

As mentioned in previous section, at least one of the collocation points should lie in
the boundary layer. There are some well-developed adaptive methods so that nodes
will concentrate near the boundary layers. We seek an efficient way to concentrate
nodes in boundary layer. For this purpose, we will apply transformations described
in [22].

In [22], authors introduced a sequence of variable transformations so that there are
some collocation points within distance ε from the boundaries ±1 even for ε ≪ 1 and
N = O(10). Without loss of generality, we assume [a, b] = [−1, 1]. For m ≥ 1 these
transformations are x(ζ) = gm(ζ), where

g0(ζ) = ζ, gm(ζ) = sin
(π

2
gm−1(ζ)

)

, m ≥ 1. (2.1)

As can be seen in Figure 1, the graphs of the transformations are flat towards the
end points of the interval. This means that the very thin boundary layer is mapped
onto a much wider region. Effectively, collocation points are moved into the thin
region.
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Figure 1. Variable transformation g1(ζ), g2(ζ), g3(ζ) and g4(ζ).
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Theorem 2.1. Let ζj =
2j

N
− 1, j = 0, 1, · · · , N. The following statement hold for

any integer m ≥ 0

gm(ζ0)− gm(ζ1) = gm(ζN−1)− gm(ζN ) = O(N−2m

). (2.2)

Proof. For estsblishing (2.2), first, we prove by induction that gm(ζ0) − gm(ζ1) =
O(N−2m).

For m = 0, we have g0(ζ0)− g0(ζ1) = ζ0 − ζ1 = −1 + (−1 +
2

N
) = − 2

N
= O(N−1)

assume

gk(ζ0)− gk(ζ1) = O(N−2k),

thereby, we have

gk+1(ζ0) − gk+1(ζ1) = −1 − sin(
π

2
gk(ζ1)) = −1 − sin(

π

2
(−gk(ζ0) + O(N−2K )) =

O(N−2K+1

).
Since gm(ζN ) = −gm(ζ0) and gm(ζN−1) = −gm(ζ1), the proof of (2.2) is hereby
complete. �

Throughout the paper, we refer to x as a physical variable and ζ as a computa-
tional variable, the singularly perturbed differential-difference equations (1.1)-(1.3)
are transformed into the new BVP

εv′′(ζ) + P (ζ)v′(ζ) +Q(ζ)v′(ζ − δ) +R(ζ)v(ζ) = F (ζ), ∀ζ ∈ (0, 1), (2.3)

v(ζ) = ω(ζ) on− δ ≤ ζ ≤ 0 (2.4)
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v(1) = γ, (2.5)

Where v is the transplant of y and v(ζ) = y(x(ζ)). The transformed coefficients are

P (ζ) =
εζ

′′

(x)

ζ
′(x)2

, Q(ζ) =
p(x)

ζ
′(x)

,

R(ζ) =
q(x)

ζ
′(x)2

, F (ζ) =
f(x)

ζ
′(x)2

.

Note that The SINE-transforms (2.1) map the intervals [−1, 0] and [0, 1] onto
themselves. Since the BVP (1.1)-(1.3) has only one layer on the left (or right), we
translate the physical domain to [−1, 0] (or [0, 1], respectively).

3. An outline of MQ RBF collocation method

3.1. MQ RBF. Given a set of N distinct points {xi ∈ ω, i = 1, . . . , N}, where ω

is a bounded domain in R
d. These points are called centers. A RBF is a function

Φ(r; c), r = ‖x − xi‖2, whose value depends only on the distance from some center
points. There are a large class of RBF. The basis function used by Hardy were the
quadric surfaces

φ(r; c) =
√

c2 + r2, (3.1)

where c is a shape parameter. The RBF (3.1) is called the multiquadric or MQ RBF.

It has become common to redefine the MQ (3.1) by first letting c =
1

ǫ
and ignoring

the scaling factor
1

ǫ
, which result in

φ(r; ǫ) =
√

1 + ǫ2r2. (3.2)

Now, we employ Integrate multiquadric RBF. Integrate RBF methods integrate the
original RBF with respect to r, one or more times, to get new basis function in hope of
restoring or even improving the convergence of the RBF methods [15]. The notation
φn(r) represent an RBF that has been integrated (n > 0) n times with respect to r:

Φ
′′

(r) = φ(r) =
√

1 + ǫ2r2,

Φ
′

(r) = φ1(r) =
(ǫr

√
1 + ǫ2r2 + sinh−1(ǫr))

2ǫ
,

Φ(r) = φ2(r) =
(−2 + ǫ2r2)

√
1 + ǫ2r2 + 3ǫrsinh−1(ǫr)

6ǫ2
.

The integrated MQ basis functions are referred to as IMQ1 and IMQ2 to indicate
how many times they have been integrated. Due to the exponential convergence and
superior performance of the IMQ2. Here, the IMQ2 will be used.
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3.2. Collocation method. Now, we briefly introduce the RBFs collocation method.
Let Ω ⊆ R

d, consider the following boundary value problem (BVP)

Lu = f in Ω, (3.3)

u = g on ∂Ω, (3.4)

where L is a linear differential operator and d is the dimension of the problem. For
nonlinear operators, some kind of linearization will be needed to seek the solution
iteratively. We distinguish in our notation centerX = {x1, ..., xN} and the collocation
points Ξ = {α1, ..., αN}. We seek the approximate solution u (x) of (3.1) and (3.3)
in the form

ũ(x) =

N
∑

i=1

λiφ(‖x − xi‖), (3.5)

where λi’s coefficients to be determined by collocation, φ is a radial basis function,
‖.‖ is the Euclidean norm, and xi is the center of the radial basis function.

Now, let Ξ be divided into two subsets. One subset contains NI centers, Ξ1, where
Eq.(3.1) is enforced and the other subset contains NB centers, Ξ2, where boundary
conditions are enforced.

The collocation matrix that is obtained by matching the differential equation and
the boundary condition at the collocation points has the following form

A =

[

AI

AB

]

,

where AI = Lφ(‖α−xj‖)α=αi
,αi ∈ Ξ1,xj ∈ X , and AB = Lφ(‖α−xj‖)α=αi

, αi ∈ Ξ2,
xj ∈ X . The unknown coefficients λi are determined by solving the linear system
Aλ = F , where F is a vector consisting f(αi), αi ∈ Ξ1, and g(αi), αi ∈ Ξ2.

4. Application of the MQ RBF collocation Method

In this section, we are interested in solving singularly perturbed differential differ-
ence equations (2.3)-(2.5) by the MQ RBF collocation method. For this purpose, we
rewrite the equations (2.3)-(2.5) as follows:

εv′′(ζ) + P (ζ)v′(ζ) +R(ζ)v(ζ) = F (ζ)−Q(ζ)ω′(ζ − δ), 0 < ζ ≤ δ (4.1)

εv′′(ζ) + P (ζ)v′(ζ) +Q(ζ)v′(ζ − δ) +R(ζ)v(ζ) = F (ζ), δ < ζ < 1 (4.2)

v(0) = ω(0); (4.3)

v(1) = γ. (4.4)

Now, we choose N equally spaced nodes ζi, i = 1, 2, . . . , N in computational domain
and approximate the unknown function v(ζ) in equation (4.1)-(4.4) by

˜v(ζ) =
∑N

i=1 λiΦ(‖ζ − ζi‖) + γ1 + γ2ζ,
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Using collocation method, one obtains the following linear system with N equations
and N + 2 unknowns λ1, λ2, . . . , λN , γ1, γ2, as follows:

N
∑

j=1

{εΦ′′(rij) + P (ζi)Φ
′(rij) +R(ζi)Φ(rij)}λj +R(ζi)γ1

+ (R(ζi)ζi + P (ζi))γ2 = F (ζi)−Q(ζi)ω
′(ζi − δ), 0 < ζi ≤ δ, (4.5)

N
∑

j=1

{εΦ′′(rij) + P (ζi)Φ
′(rij) +Q(ζi)Φ

′(‖ζi − δ − ζj‖) +R(ζi)Φ(rij)}λj

+R(ζi)γ1 + (P (ζi) +Q(ζi) +R(ζi)ζi)γ2 = F (ζi), δ < ζi < 1, (4.6)

N
∑

j=1

λjΦ(r1j) + γ1 + γ2ζ1 = ω(ζ1), ζ1 = 0,

N
∑

j=1

λjΦ(rNj) + γ1 + γ2ζN = γ, ζN = 1,

where rij = ‖ζi− ζj‖. We impose two supplementary collocation conditions at ζ1 and
ζN in (4.1) and (4.2), respectively, to obtain a (N + 2) × (N + 2) system of linear
equations.
We have used the Gaussian elimination method to solve such a system.
Note that this provides the solution in the form of a function that can be evaluated
anywhere in [0, 1] and no additional interpolation is required.

5. Error estimation

Let us call e(ζ) = v(ζ)− ṽ(ζ) as the error function. Where v(ζ) is the exact solution
of (2.3)-(2.5) and ṽ(ζ) is approximation of v(ζ). Hence,

εṽ′′(ζ)+P (ζ)ṽ′(ζ)+Q(ζ)ṽ′(ζ−δ)+R(ζ)ṽ(ζ)−F (ζ) = R(ζ), ∀ζ ∈ (0, 1), (5.1)

ṽ(ζ)− ω(ζ) = R1(ζ), −δ ≤ ζ ≤ 0, (5.2)

ṽ(ζ)− γ = R2(ζ), ζ = 1, (5.3)

and

εv′′(ζ) + P (ζ)v′(ζ) +Q(ζ)v′(ζ − δ) +R(ζ)v(ζ)− F (ζ) = 0, ∀ζ ∈ (0, 1), (5.4)

v(ζ) − ω(ζ) = 0, −δ ≤ ζ ≤ 0, (5.5)

v(1)− γ = 0. (5.6)

By subtracting Eqs. (5.4)-(5.6) from (5.1)-(5.3), we have

ε(v′′(ζ)− ṽ(ζ)) + P (ζ)(v′(ζ) − ṽ′(ζ)) +Q(ζ)(v′(ζ − δ)− ṽ′(ζ − δ)
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+R(ζ)(v(ζ) − ṽ(ζ)) = −R(ζ), o < ζ < 1,

v(ζ) − ṽ(ζ) = −R1(ζ), −δ ≤ ζ ≤ 0,

v(1)− ṽ(1) = −R2(ζ), ζ = 1.

Now, the error function e(ζ) is satisfying below problem

εe′′(ζ) + P (ζ)e′(ζ) +Q(ζ)e′(ζ − δ) +R(ζ)e(ζ) = −R(ζ), 0 < ζ < 1,

e(ζ) = −R1(ζ), −δ ≤ ζ ≤ 0,

e(ζ) = −R2(ζ), ζ = 1.

Since the function R(ζ) is known, so to find approximate error, we follow the same
method mentioned in section 4.

6. Numerical experiments

This section is devoted to the computational results. We present the numerical
results of proposed method on several test problems with right and left layer. The
unknown function v(ζ) in the transformed BVP (2.3) is approximated with v(ζ) =
∑N

i=1 λiΦ(‖ζ − ζi‖) + γ1 + γ2ζ, where Φ is IMQ2 basis function.
The accuracy of the RBFs solution, depends heavily on the choice of a parameter

c in radial basis function. We use uniformly distributed data center for all examples
and shape parameter cj = 0.815dj for the IMQ2 basis, suggested in [7], where dj is
the distance from jth point to its nearest neighbor, a constant shape parameter for
uniformly distributed data center.

All codes were written in MatlabR2012a on a 2.30 MHz Alpha Machine with 4
GB RAM. Since the exact solutions are not known for the considered examples, we
use two ways for reporting the errors as follows
i) double mesh principle EN

ε = max |yNi − y2N2i |.
ii) residual error EN

r = |L(yNi )− f(xi)|,
where xi does not belonging to the collocation points in residual error. We remark
that some of the data points in the physical domain coincide numerically near the
boundaries. This does not cause difficulties, as there is no coincidence in the compu-
tational domain.

Example 6.1. First, we consider the following BVP

εy′′(x) + y′(x− δ)− y(x) = 0, ∀x ∈ (0, 1), (6.1)

y(x) = 1 on − δ ≤ x ≤ 0, (6.2)

y(1) = 1, (6.3)

the transformed equations with new variable ζ = ζ(x) are

εv′′(ζ) +
εζ

′′

(x)

ζ
′(x)2

v′(ζ) +
1

ζ
′(x)

v′(ζ − δ)− 1

ζ
′(x)2

v(ζ) = 0, ∀ζ ∈ (0, 1), (6.4)

v(ζ) = 1 on − δ ≤ ζ ≤ 0, (6.5)
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v(1) = 1. (6.6)

Figure 2. Solution of Example 6.1 plotted against the computational variable
and physical variable.
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Figure 3. Numerical Solution for Example 6.1, m = 2, N = 128, ǫ = 0.01.
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Figure 4. The numerical solution of Example 6.1, ε = 0.01,m = 0
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Figure 5. The numerical solution of Example 6.1, ε = 0.01,m = 0
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Figure 6. Maximum Residual Error for Example 6.1 with δ = 0.008, ǫ = 0.01, as
a function of N .
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Example 6.2. Now, we consider BVP (1.1)-(1.3) with variable coefficients, i.e., for
p(x) = e−0.5x, q(x) = −1, f(x) = 0, ω(x) = 1 and γ = 1.

Figure 7. Graph of the numerical solution of Example 6.2, m = 2, N = 128,
ε = 0.01.
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Figure 8. Maximum Residual Error for Example 6.2 with δ = 0.00003, ǫ = 0.0001,
as a function of N .
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Example 6.3. To demonstrate the efficiency in the case when boundary layer occurs
on the right side, we consider the BVP (1.1)-(1.3) with constant coefficients, i.e., for
p(x) = −1, q(x) = −1, f(x) = 0, ω(x) = 1 and γ = −1.

We have plotted the graphs of computed solution of the problems for a set of 128
uniform centers, m = 2 and for different values of δ and ε , in Figures 3, 7 and 9.
As Figure 3 shows, the BVP (6.1)-(6.3) has one boundary layer on the left side of
the underlying interval and as Figure 9 shows, the BVP in example 6.3 has one right
boundary layer.
We observe that if δ = o(ε), the layer behavior is maintained in both the cases (i.e.,
the left side boundary layer case and the right boundary layer case) whether the co-
efficient of the delay term is of O(1) or o(1).
As the delay increases, the thickness of the layer decreases in the case when the so-
lution exhabits layer behavior on the left side as shown in Figures 3 and 7. While in
the case of the right side boundary layer, it increases as shown in Figures 9 and 10.
If δ = O(ε), in the case of the left side boundary layer, the layer behavior of the
solution is no longer maintained whether the coefficient of the delay term is of O(1)
or o(1) and the solution exhabits oscillatory behavior. Not only the layer behavior is
destroyed oscillations previosly confined to the layer region are extended across the
entire interval [0,1] also as shown in Figures 4 and 5. While in the case of the right
side boundary layer, the layer behavior of the solution is maintained although the
coefficent of the delay term is of o(1) as shown in Figure 10.
Figures 6, 8 and 12 show residual error for different values of δ and ε as a function of
N. We observe as m increases the residual error decreases. Tables 1-3 give the maxi-
mum error for different δ, m and N for the above examples. We observe in tables 1-3
as SINE-transforms increase the maximum error decreases.
The reader can see the results we get using integrated multiquadric collocation method
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are much better than the results are given in [8].
Note: we have used SINE transforms, only the solution has the boundary layer be-
havior. When the solution has oscillatory behavior, employing SINE transforms does
not improve the accuracy of the solution. Even, it may decrease the accuracy.

Figure 9. Graph of the numerical solution of Example 6.3, m = 2, N = 128,
ε = 0.001.
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Figure 10. The numerical solution of Example 6.3, ε = 0.01, m = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

x

 

 

δ=1.5ε

δ=2.5ε

δ=3.5ε



308 F. AKHAVAN GHASSABZADE, J. SABERI-NADJAFI, AND A. R. SOHEILI

Figure 11. The numerical solution of Example 6.3, ε = 0.01, m = 0.
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Figure 12. Maximum Residual Error for Example 6.3 with δ = 0.0007, ǫ =
0.001, as a function of N .
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Table 1. Maximum error of Example 6.1 for ε = 0.1.

δ
N

M
50 100 150 200

0 0.0016 0.0018 0.0011 7.8027e− 04
0.01 1 4.0293e− 04 1.0051e− 04 4.0771e− 05 2.4045e− 05

2 1.0594e− 04 2.4423e− 05 1.1186e− 05 6.3543e− 06
0 0.0094 0.0051 4.0667e− 05 0.0025

0.03 1 3.4102e− 04 1.1078e− 04 4.0667e− 05 3.4171e− 05
2 3.4797e− 04 2.5754e− 05 1.1517e− 05 6.4644e− 06
0 0.0263 2.7909e− 04 0.0083 0.0062

0.08 1 7.2511e− 04 2.7909e− 04 1.6780e− 04 1.1895e− 04
2 5.5385e− 04 1.3903e− 04 6.2231e− 05 3.5168e− 05

Table 2. Maximum error for Example 6.2 for ε = 0.01.

δ
N

M
50 100 150 200

0 0.0081 0.0142 0.0100 0.0069
0.001 1 0.0048 0.0011 5.0165e− 04 2.8042e− 04

2 6.5852e− 04 1.4348e− 04 5.8195e− 05 3.0685e− 05
0 0.008560 0.0237 0.0195 2.8459e− 04

0.003 1 0.0048 0.0011 5.0323e− 04 2.8459e− 04
2 6.9742e− 04 1.4210e− 04 5.2190e− 05 2.5779e− 05
0 0.0561 0.3728 0.0675 0.0723

0.008 1 0.0561 0.0012 4.7590e− 04 2.8209e− 04
2 7.0626e− 04 8.6747e− 05 4.1835e− 05 2.6218e− 05

Table 3. Maximum error for Example 6.3 for ε = 0.001.

δ
N

M
50 100 150 200

0 0.281446 0.1355 0.0520 0.0200
0.0007 1 0.0808 0.0227 0.0099 0.0055

2 3.0191e− 04 5.4816e− 05 2.3388e− 05 1.2601e− 05
0 0.2075 0.0566 0.0129 0.0382

0.0015 1 0.0802 0.0229 0.0100 0.0055
2 3.0193e− 04 5.1258e− 05 2.0834e− 05 1.0483e− 05
0 0.1367 0.0165 0.0498 0.0634

0.0025 1 0.0794 0.0231 0100 0056
2 3.0195e− 04 4.5959e− 05 1.6214e− 05 5.8972e− 06
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7. Conclusion

In this paper, an effective method is proposed for solving singularly perturbed
differential-difference equations with boundary layer. The present method is based
on coordinate stretching transform and the integrated multiquadric (MQ) collocation
method. Numerical results show that the presented method is an accurate and reli-
able technique for singularly perturbed differential-difference equations with boundary
layer.
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