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Abstract A meshless numerical technique is proposed for solving the generalized variable coeffi-

cient Schrödinger equation and Schrödinger-Boussinesq system with electromagnetic
fields. The employed meshless technique is based on a generalized smoothed particle

hydrodynamics (SPH) approach. The spatial direction has been discretized with

the generalized SPH technique. Thus, we obtain a system of ordinary differential
equations (ODEs). Also, in the numerical methods for solving the time-dependent

PDEs, based on the meshless methods, to achieve acceptable results, the temporal
direction must be discretized using an effective technique. Thus, in the current pa-

per, we apply the fourth-order exponential time differenceing Runge-Kutta method

(ETDRK4) for the obtained system of ODEs. The aim of this paper is to show
that the meshless method based on the generalized SPH approach is suitable for

the treatment of the nonlinear complex partial differential equations. Numerical

examples confirm the efficiency of proposed scheme.

Keywords. Nonlinear generalized variable coefficient Schrödinger equation, Electromagnetic fields, Schrödinger-

Boussinesq system, Meshless method, Smoothed particle hydrodynamics method, Fourth-order exponential

time differenceing Runge-Kutta method.

2010 Mathematics Subject Classification. 65M70, 34A34.

1. Introduction

Natural phenomena can be described by partial differential equations (PDEs).
Nonlinear phenomena play important role in applied mathematics, physics and also in
engineering problems in which each parameter varies depending on different factors.
As said in [34], many phenomena in engineering and applied sciences are modeled by
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nonlinear evolution equations [34]. Solitonary solutions of nonlinear evolution equa-
tions provide better understanding of the physical mechanism of phenomena [34]. The
knowledge of closed form solutions of nonlinear partial differential equations facilitates
the testing of numerical solvers, aids in the stability analysis of solutions and con-
duces to a better understanding of nonlinear phenomena that these equations model
[13]. Also, the search of exact solution for nonlinear partial differential equations is
very difficult. Therefore, numerical methods are useful for solving nonlinear partial
differential equations.

In this paper, we consider two models that one of them is the generalized Schrödinger
equation with variable coefficients

i
∂u

∂t
+ a(t)

∂2u

∂x2
+ b(t)

∂2u

∂y2
+ c(t)

∂2u

∂z2
+ h(t)f(|u|2)u+ v(x, y)u = 0,

(x, y, z, t) ∈ Ω× (0, T ],

(1.1)

with Dirichlet boundary condition

u(x, y, z, t) = g(x, y, z, ), (x, y, z, t) ∈ ∂Ω, (1.2)

and initial condition

u(x, y, z, 0) = k(x, y, z), (x, y, z) ∈ Ω. (1.3)

List of the works have been done on this problem includes: a linearized finite-difference
scheme [4], a compact split-step finite difference method [8], a spatial sixth-order
alternating direction implicit method [23], a compact finite difference scheme [24],
fourth-order compact and energy conservative difference schemes [42], meshless col-
location method based on the radial basis functions [7], four alternating direction
implicit (ADI) schemes [52], split-step orthogonal spline collocation (OSC) methods
[41], the tanh method and the sine–cosine method [43, 44], etc.

The other one is also the Schrödinger-Boussinesq system
i
∂u

∂t
+ γ∆u = ξuv, x ∈ Rd, t > 0,

∂2v

∂t2
= ∆v − α∆2v + ∆(f(v)) + ω∆(|u|2), x ∈ Rd, t > 0,

(1.4)

in which the complex function u and the real function v denote the electric field of
Langmuir oscillations and the low-frequency density perturbation, respectively.

Problem (1.4) has been solved by many numerical techniques for example a con-
tinuum limit for a diatomic lattice system with a cubic nonlinearity [53], the exis-
tence and uniqueness of the global solutions with initial value problem or periodic
boundary value problem [14], the global existence of solutions and the long time
behavior of nonlinear Schrodinger-Boussinesq equations with zero order dissipation
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[16], the local and global well-posedness of the periodic boundary value problem for
the nonlinear Schrodinger-Boussinesq system [11], existence of solution for dissipative
Schrodinger-Boussinesq equations [25], the attractor and its regularity of the damped
Schrodinger-Boussinesq equation [15], complex coupled Higgs field equation and cou-
pled Schrodinger-Boussinesq equation [18], G/G′-expansion method is used to con-
struct exact periodic and soliton solutions of nonlinear Schrodinger-Boussinesq system
[21], the new exact traveling wave solutions of the coupled Schrodinger-Boussinesq
equation by using the extended simplest equation method [3], analytical solutions of a
generic system of coupled ordinary differential equations for a pair of real scalar fields
[36], five important and general solitary wave solutions for Schrodinger-Boussinesq
equation [38], combination of boundary knot method and meshless analog equation
method [9], time-splitting method combined with with the Chebyshev pseudo-spectral
[40], Kansa’s approach, RBFs-Pseudo-spectral (PS) method and generalized moving
least squares (GMLS) method [10], time-splitting combined with exponential wave
integrator Fourier pseudospectral method [28], the time-splitting Fourier spectral
method [1], a multi-symplectic Hamiltonian formulation [22], a Not-a-Knot meshless
method using radial basis functions and predictor-corrector scheme [39], a conserva-
tive difference scheme [55], two conserved compact finite difference schemes [27], a
quadratic B-spline finite-element method [2], etc.

2. Smoothed Particle Hydrodynamics (SPH) method

One of the local meshless methods is smoothed particle hydrodynamics (SPH)
that is presented in [12, 33]. The SPH technique is a computational method used for
simulating the dynamics of continuum media, such as solid mechanics and fluid flows.
The SPH method is a mesh-free Lagrangian method where the coordinates move
with the fluid, and the resolution of the method can easily be adjusted with respect
to variables such as the density. The SPH method is based on dividing the fluid into a
set of discrete elements that they are well-known as “particles”. These particles have
a spatial distance over which their properties are “smoothed” by a kernel function.
This means that the physical quantity of any particle can be obtained by summing
the relevant properties of all the particles which lie within the range of the kernel.
Also, the SPH method is employed for the shallow water equation. The interested
readers can find more information on SPH method in [45]

Wei and et. al. [46] applied the SPH method to investigate the impact of a
tsunami bore on simplified bridge piers in this study. This work was motivated by
observations of bridge damage during several recent tsunami events. The main aim of
[47, 48] is to apply the numerical model of GPUSPH, an implementation of the weakly
compressible Smoothed Particle Hydrodynamics method on graphics processing units,
to investigate tsunami forces on bridge superstructures and tsunami mitigation on
bridges by using a service road bridge and an offshore breakwater. Authors of [49]
investigated vorticity generation by short-crested wave breaking by using the mesh-
free Smoothed Particle Hydrodynamics model.

The SPH is a computational method used for simulating the dynamics of con-
tinuum media, such as cell-wise strain smoothing operations into conventional finite
elements and the smoothed finite element method (SFEM) for 2D elastic problems
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[30]. The SPH technique has been studied by many researchers such as a corrected
parallel SPH (C-SPH) method to simulate the 3D generalized Newtonian free surface
flows with low Reynolds’ number [37], distributed memory parallelization of particle
methods [35], a novel caching algorithm for Computing Unified Device Architecture
(CUDA) shared memory [50], an improved weakly compressible SPH method to simu-
late transient free surface flows of viscous and viscoelastic fluids [51], a low-dissipation
weakly-compressible SPH method for modeling free-surface flows exhibiting violent
events [54], etc. Also, the interested readers can find more details for SPH method in
[31, 32],

In this section, we describe the meshless smoothed particle hydrodynamics mesh-
less method. The main idea for this method is based on the integral representation
of a field function u(x) as follows

〈u(x)〉 =

∫
Ω

u(x′)W (x− x′, h)dx′, (2.1)

in which

(1) W is smoothing function or kernel function,
(2) h is the smoothing length defining the influence area of W .

The integral representation (2.1) is convergent when W satisfies the following condi-
tions:

∫
Ω

W (x− x′, h)dx′ = 1, (2.2)

lim
h→0

W (x− x′, h) = δ(x− x′), (2.3)

W (x− x′, h) > 0, on Ω, (2.4)

W (x− x′, h) = 0, when |x− x′| > kh, (2.5)

in which k is a constant which is a measure of the effective (non-zero) area of the
smoothing function centered at a point having position vector x. The mentioned
effective area is well-known as the support domain. Based on the condition (2.5), the
integration over the computational domain can be reduced over the support domain
thus we have a localized technique. Let the smoothing function W be an even function
in x. Then using the Taylor series expansion of function u(x) around x and the
condition (2.2), it can be seen that the representation of u(x) has the second-order
O(h2) accuracy. Also, it must be mentioned that this is true for interior regions and
for the boundary regions, we can not obtain the second-order accuracy.
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By discretizing the continuous integral representation (2.1), we can get the particle
approximation as follows:

〈u(x)〉 '
∑
j

mj

ρj
ujW (x− xj , h), (2.6)

in which mj and ρj are the mass and density of the particle j, respectively. In other
hand,

mj
ρj

gives the volume Vj respected to j. The particle approximation for the

spatial derivative ∂u(x)
∂x can be obtained by substituting function u(x) with ∂u(x)

∂x
in relation (2.1). Using the integration by parts and also employing the divergence
theorem, we can get〈

∂u(x)

∂x

〉
=

∫
∂Ω

u(x′)W (x− xj , h)nds−
∫
Ω

u(x′)
∂W (x− x′, h)

∂x′
dx′. (2.7)

The first boundary integral term has been eliminated. Thus, Eq. (2.7) can be written
as follows:〈

∂u(x)

∂x

〉
' −

∑
j

mj

ρj
uj
∂W (x− xj , h)

∂xj
. (2.8)

Finally, the particle approximation for a function and its derivatives at particle i can
be written to the following form:

ui =
∑
j

mj

ρj
ujWij , (2.9)

(
∂u(x)

∂x

)
i

=
∑
j

mj

ρj
(uj − ui)

∂Wij

∂xi
, (2.10)

in which

Wij = W (xi − xj , h),
∂Wij

∂xi
=
∂W (xi − xj , h)

∂xi
.

The smooth function is an important issue in the SPH method that it has direct effect
on accuracy, efficiency and stability of the resulting algorithm. There are several
selections to the smooth function such as Gaussian functions, spline functions, etc.
In the current paper, we have used the quintic spline function to the following form

Wij = W (r, h) = λ0 ×


(3− λ)5 − 6(2− λ)3 + 15(1− λ)5, 0 ≤ λ < 1,
(3− λ)5 − 6(2− λ)3, 1 ≤ λ < 2,
(3− λ)5, 2 ≤ λ < 3,
0, λ ≥ 3,

(2.11)

in which

r = ‖xi − xj‖ , λ =
r

h
, λ0 =

7

478πh2
. (2.12)
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3. A generalized SPH method

In the current section, we employ the developed approach in [5] and also, this
section is taken from [5]. Using the Taylor series for u about the point (xi, yi),
multiplying both sides with a kernel functionW and integrating over the entire domain
Ω yield [5]∫

Ω

u(x̂)Wdx = u(x̂i)

∫
Ω

Wdx+ ux(x̂i)

∫
Ω

(x− xi)Wdx

+uy(x̂i)

∫
Ω

(y − yi)Wdx+
uxx(x̂i)

2

∫
Ω

(x− xi)2
Wdx

+uxy(x̂i)

∫
Ω

(x− xi)(y − yi)Wdx+
uyy(x̂i)

2

∫
Ω

(y − yi)2
Wdx+ . . .

(3.1)

thus a corrective version of the kernel and particle approximations may be obtained
as [5]

u(x̂i) =

∫
Ω

u(x̂)Wdx

∫
Ω

Wdx

, (3.2)

and [5]

ui =

N∑
j=1

mj

ρj
Wijuj

N∑
j=1

mj

ρj
Wij

. (3.3)

So, the derivative approximations in 1D case are [5]

uxi ≈

∫
Ω

[u(x)− ui] Ŵdx

∫
Ω

(x− xi)Ŵdx

, (3.4)

uxxi ≈

∫
Ω

[u(x)− ui] Ŵdx− uxi
∫
Ω

(x− xi)Ŵdx

1
2

∫
Ω

(x− xi)2
Ŵdx

. (3.5)

But in the two-dimensional case, there is not a straightforward way similar to 1D
case. Ignoring the second-order derivatives and also higher terms in Eq. (3.1), for the
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two first derivatives fxi and fyi gives [5]

fxi

∫
Ω

(x− xi)W,xdx+ fyi

∫
Ω

(y − yi)W,xdx =

∫
Ω

(f − fi)W,xdx, (3.6)

fxi

∫
Ω

(x− xi)W,ydx+ fyi

∫
Ω

(y − yi)W,ydx =

∫
Ω

(f − fi)W,ydx. (3.7)

Replacing kernel functionW by the anti-symmetric functionsW,x andW,y in relations
(3.6) and (3.7), the particle approximations may be obtained as

Aαβiuβi = Fαi, (3.8)

in which [5]

Aαβi =

N∑
j=1

(βj − βi)
mj

ρj
Wij,α, Fαβi =

N∑
j=1

(fj − fi)
mj

ρj
Wij,α, (3.9)

where α and β represent the spatial coordinates x and y, respectively, and also Wij,α =
∂W (xj − xi;h)

∂αj
. Finally, by solving the system of equations (3.8), we can obtain the

two first-order derivatives at particle i. Also to approximate the three second-order
derivatives, the following system must be solved Axxxxi Axxxyi Axxyyi

Axyxxi Axyxyi Axyyyi
Ayyxxi Ayyxyi Ayyyyi

 uxxi
uxyi
uyyi

 =

 Gxxi −Axxxiuxi −Axxyiuyi
Gxyi −Axyxiuxi −Axyyuyi
Gyyi −Ayyxiuxi −Ayyyiuyi

 ,
(3.10)

in which [5]

Aξηαβi =

N∑
j=1

(αj − αi)(βj − βi)
mj

ρj
Wij,ξη, (3.11)

Aξηαi =

N∑
j=1

(αj − αi)
mj

ρj
Wij,ξη, (3.12)

Gξηi =

N∑
j=1

(fj − fi)
mj

ρj
Wij,ξη. (3.13)

4. GSPH discretization for Schrödinger and Schrödinger-Boussinesq
models

In the current section, we describe implementing the GSPH technique on the two
considered models.
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At first, we consider the first model i.e. the generalized Schrödinger equation with
variable coefficients as follows

i
∂u

∂t
+a(t)

∂2u

∂x2
+b(t)

∂2u

∂y2
+h(t)f(|u|2)u+v(x, y)u = 0, (x, y, z, t) ∈ Ω×(0, T ].

(4.1)

Eq. (4.1) at particle k can be rewritten as

i
∂uk
∂t

+ a(t)
∂2uk
∂x2

+ b(t)
∂2uk
∂y2

+ h(t)f(|uk|2)uk + v(xk, yk)uk = 0. (4.2)

By substituting relations (3.3) and (3.11)-(3.13) in Eq. (4.2), we can obtain a system
of ODEs. Also, for the Schrödinger-Boussinesq system

i
∂u

∂t
+ γ∆u = ξuv, x ∈ Rd, t > 0,

∂2v

∂t2
= ∆v − α∆2v + ∆(f(v)) + ω∆(|u|2), x ∈ Rd, t > 0,

(4.3)

using the relations

w = vt, ∆v = z, (4.4)

Eq. (4.3) can be rewritten as follows

i
∂u

∂t
+ γ∆u = ξuv, x ∈ Rd, t > 0,

∂w

∂t
= z − α∆z + ∆(f(v)) + ω∆(|u|2), x ∈ Rd, t > 0,

∂vk
∂t

= wk, x ∈ Rd, t > 0,

z = ∆v, x ∈ Rd, t > 0.

(4.5)

Similar to previous model, Eq. (4.5) at particle k can be rewritten as

i
∂uk
∂t

+ γ∆uk = ξukvk, x ∈ Rd, t > 0,

∂wk
∂t

= zk − α∆zk + ∆(f(vk)) + ω∆(|uk|2), x ∈ Rd, t > 0,

∂vk
∂t

= wk, x ∈ Rd, t > 0,

zk = ∆vk, x ∈ Rd, t > 0,
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(4.6)

Eqs. (4.2) and (4.6) are system of ODEs that must be solved using a numerical
approach with acceptable and effective numerical technique. In the current paper, we
use the fourth-order exponential time differenceing Runge-Kutta method (ETDRK4)
to solve the obtained system of ODEs [6, 19, 20, 26]. The ETDRK4 method can be
used for discritizing the following ordinary differential equation

Ut +AU = F (U, t). (4.7)

Liang et. al. [26] proposed an improved ETDRK4 method which we can bypass the
inversion of the complex stiffness matrix. The improved ETDRK4 method can be
split as follows [26]

Step 1.:
(
τA− d̃1I

)
α = ω̃1U

n
h + τ ζ̃1F (Unh , tn) ,

Step 2.: an = Unh + 2R(α),

Step 3.:
(
τA− d̃1I

)
β = ω̃1U

n
h + τ ζ̃1F

(
an, tn + τ

2

)
,

Step 4.: bn = Unh + 2R(β),

Step 5.:
(
τA− d̃1I

)
γ = ω̃1a

n + τ ζ̃1
[
2F
(
bn, tn + τ

2

)
− F (Unh , tn)

]
,

Step 6.: bn = an + 2R(γ),
Step 7.: (τA− d1I)φ = ω1u

n
h+τω11F (Unh , tn)+τω21

[
F
(
an, tn + τ

2

)
+ F

(
bn, tn + τ

2

)]
+

τω31F (cn, tn + τ) ,
Step 8.: Un+1

h = Unh + 2R(φ).

In the above, R(z) denotes the real part of z and the appeared coefficients are as
follows [26]

d1 = −3.0 + i1.73205080756887729352,
ω1 = −6.0− i10.3923048454132637611,
ω11 = −0.5− i1.44337567297406441127,
ω21 = −i1.15470053837925152901,
ω31 = 0.5 + i0.28867513459481288225,

d̃1 = −6.0 + i3.4641016151377545870548,
ω̃1 = −12.0− i20.78460969082652752232935,
ζ1 = −i3.46410161513775458705.

5. Numerical simulations

In this part we tabulate the numerical results of procedure applied on six test
problems. We test the accuracy with the stability of new numerical formula described
here by performing the described algorithm for different values of h and τ . We
performed our computations using Matlab 7 software on a Pentium IV, 2800 MHz
CPU machine with 4 Gbyte of memory.

5.1. Test problem 1. We consider the one-dimensional Schrodinger equation to the
following form [8]

i
∂u

∂t
+ α

∂2u

∂x2
+ 2|u|2u = 0, (5.1)
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Figure 1. Approximation solution with absolute error at different
values of final time for Test problem 1.
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with the exact solution

u(x, t) = exp(i(2x− 3t)) sech(x− 4t). (5.2)

Table 1. Error obtained at final time T = 1 for Test problem 1

h Ω = [−1, 1] Ω = [−2, 2] Ω = [−4, 4] Ω = [−6, 6]

1/10 4.8075 × 10−3 1.6398 × 10−1 8.9726 × 10−1 9.0734 × 10−1

1/15 5.8183 × 10−4 2.0774 × 10−2 5.4933 × 10−1 5.7749 × 10−1

1/20 1.1278 × 10−4 3.7477 × 10−3 1.4802 × 10−1 4.5039 × 10−1

1/25 4.1711 × 10−5 8.9945 × 10−4 7.0163 × 10−2 3.6619 × 10−1

1/30 2.0383 × 10−5 3.0698 × 10−4 3.1438 × 10−2 9.0734 × 10−1

1/35 1.2480 × 10−5 1.0706 × 10−4 1.4774 × 10−2 5.7749 × 10−2

1/40 6.2955 × 10−6 4.3497 × 10−5 7.5061 × 10−3 4.5039 × 10−2

1/45 4.9113 × 10−6 2.5921 × 10−5 4.0960 × 10−3 3.6619 × 10−2

1/50 4.8947 × 10−6 2.1068 × 10−5 2.5885 × 10−3 3.6619 × 10−2

We solve the current problem using the explained technique. Table 1 shows the
error obtained at final time T = 1 for Test problem 1. Also, Table 2 shows the error
obtained at final time T = 1 for Test problem 1. In other word, from Tables 1 and 2,
we can see the convergence of the proposed method at final time T = 1 on the different
computational domains. Figure 1 presents the graphs of approximation solution with
absolute error on computational domain Ω = [−20, 20] and at different values of final
time for Test problem 1. Table 3 shows a comparison between obtained errors of the
developed technique in [8] with h = 0.1 and k = 0.01 and the method presented in
this paper with τ = 10−3 and h = 0.01 for Test problem 1.

5.2. Test problem 2. In the current problem, we consider the generalized Schrodinger
equation with variable coefficients as follows [17]

i
∂u

∂t
+ a(t)

∂2u

∂x2
+ b(t)

∂2u

∂y2
+ h(t)f(|u|2)u+ v(x, y)u = 0, (5.3)

Table 2. Error obtained at final time T = 2 for Test problem 1

h Ω = [−1, 1] Ω = [−2, 2] Ω = [−3, 3] Ω = [−4, 4]

1/10 4.4881 × 10−3 2.2697 × 10−1 8.5223 × 10−1 5.0966 × 10−1

1/15 2.6023 × 10−3 2.2651 × 10−1 5.0009 × 10−1 2.3033 × 10−1

1/20 1.5122 × 10−4 4.4425 × 10−3 1.9165 × 10−2 4.0682 × 10−1

1/25 4.3466 × 10−5 8.4246 × 10−4 6.4934 × 10−3 9.7671 × 10−2

1/30 2.0333 × 10−5 3.1114 × 10−4 2.6018 × 10−3 3.4509 × 10−2

1/35 1.2489 × 10−5 2.0784 × 10−4 1.1426 × 10−3 1.5225 × 10−2

1/40 8.7301 × 10−6 8.7946 × 10−5 5.0972 × 10−4 7.7305 × 10−3
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Table 3. Comparison between obtained errors for component u Test
problem 1

Compact SSFD-ADI [8] Present Method,

T L∞ L2 L∞ L2

0.5 1.939 × 10−3 2.845 × 10−3 9.210 × 10−3 7.591 × 10−3

1 3.721 × 10−3 5.672 × 10−3 7.989 × 10−3 6.989 × 10−3

2 7.848 × 10−3 1.237 × 10−2 4.041 × 10−2 1.501 × 10−2

3 1.242 × 10−2 1.969 × 10−2 2.653 × 10−2 1.010 × 10−2

4 3.674 × 10−2 3.662 × 10−2 4.210 × 10−2 3.983 × 10−2

Figure 2. Approximation solution with its contour and graph of
absolute error at final time T = 1 for Test problem 3.

with

a(t) = b(t) =
1

2
, h(t) = 1, f(|u|2) = −|u|2, v(x, y) = −(1−sin2(x)sin2(y)),

(5.4)
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then the exact solution will be

u(x, y, t) = exp(−2it) sin(x) sin(y). (5.5)

Table 4. Error obtained at different final time for Test problem 2

h T = 1 T = 2 T = 5 T = 10

π/20 5.4458 × 10−8 7.3915 × 10−8 1.5154 × 10−7 9.0734 × 10−7

π/40 1.1524 × 10−8 4.4714 × 10−8 8.1866 × 10−8 5.7749 × 10−7

π/50 8.8191 × 10−9 1.0471 × 10−8 3.5151 × 10−8 4.5039 × 10−8

π/60 5.0042 × 10−9 9.1124 × 10−9 1.0931 × 10−8 3.6619 × 10−8

Table 5. Comparison between obtained errors for component u Test
problem 2

Linearized CCD-ADI [17] Present Method

h L∞ L2 L∞ L2

π/4 7.41 × 10−4 3.50 × 10−4 6.38 × 10−3 4.85 × 10−3

π/8 1.56 × 10−5 5.86 × 10−6 8.29 × 10−5 2.93 × 10−5

π/16 2.00 × 10−7 8.87 × 10−8 1.48 × 10−5 4.39 × 10−6

We solve this problem using the proposed technique. Table 4 presents the error
obtained at different values of final time for Test problem 2. Figure 2 illustrates the
graphs of approximation solution with its contour and absolute error at final time
T = 1 for Test problem 2.

5.3. Test problem 3. We consider the one-dimensional Schrodinger equation to the
following form [8]

i
∂u

∂t
+ α∆u+ 2|u|2u = 0, (x, y) ∈ Ω, (5.6)

with the exact solution

u(x, t) = exp(i(2x+ 2y − 3t)) sech(x+ y − 4t). (5.7)

We obtain the approximation solution for the current problem based on the pro-
posed technique. Table 6 demonstrates the error obtained on computational domain
Ω = [−5, 5] × [−5, 5] and at different values of final time for Test problem 3. Figure
3 displays the contour of approximation solution at different values of final times for
Test problem 3.
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Table 6. Error obtained on computational domain Ω = [−5, 5] ×
[−5, 5] for Test problem 3

ns T = 0.5 T = 1 T = 2 T = 4

5 4.9271 × 10−2 9.6457 × 10−2 4.0655 × 10−1 8.4320 × 10−1

10 1.9591 × 10−2 3.7942 × 10−2 1.1741 × 10−1 3.5578 × 10−1

20 2.1420 × 10−3 4.7193 × 10−3 1.5396 × 10−2 7.8103 × 10−2

30 8.2119 × 10−4 1.7754 × 10−3 1.9787 × 10−3 5.3219 × 10−3

40 2.4108 × 10−4 7.0226 × 10−4 8.4317 × 10−4 1.0412 × 10−3

5.4. Test problem 4. We consider the Schrödinger-Boussinesq system as [28]
i
∂u

∂t
+ γuxx = ξuv, x ∈ Ω, t > 0,

∂2v

∂t2
= vxx − αvxxxx + (f(v))xx + ω(|u|2)xx, x ∈ Ω, t > 0,

(5.8)

with exact solution
u(x, t) = ±6b1

ξ

√
γθ − αξ
γω

sech(µζ) tanh(µζ)ei(
M
2γ+δt),

v(x, t) = −6b1
ξ

sech2(µζ),

(5.9)

in which

b1 = δ +
M2

4γ
, d1 = 1−M2, µ =

√
b1
γ
,

ζ = x−Mt, γ = 1, ξ = 1, α = 1,

θ =
4

3
, ω =

1

18
, M =

1√
5
, δ =

1

12
.

We solve this equation using the proposed technique. Table 7 presents the error
obtained to show the accuracy and computational order of time-discrete scheme with
h = 1/300 for Test problem 4.

Table 8 demonstrates a comparison between errors obtained based on the developed
techniques in [28, 29] with τ = 10−4 and the present method with τ = 10−5 for Test
problem 4.
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Figure 3. Contour of approximation solution at different values of
final times for Test problem 3.
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Figure 4. Approximation solution with its contour and graph of
absolute error at final time T = 1 for Test problem 3.

Table 7. Numerical results and computational orders with h =
1/300 for Test problem 4

u v

τ L∞ C-order L∞ C-order

1
10

6.8257 × 10−1 − 7.6431 × 10−1 −
1
20

5.5556 × 10−2 3.6189 6.3469 × 10−2 3.5900
1
40

4.0679 × 10−3 3.7716 4.6731 × 10−3 3.7636
1
80

3.2279 × 10−4 3.6556 3.6380 × 10−4 3.6832
1

160
3.4238 × 10−5 3.2369 3.6745 × 10−5 3.3075

1
320

4.2010 × 10−6 3.0268 4.3268 × 10−6 3.0862
1

640
3.4658 × 10−7 3.5994 3.4785 × 10−7 3.6367



CMDE Vol. 6, No. 2, 2018, pp. 215-237 231

Table 8. Comparison between obtained errors for Test problem 4

h Method of [28] Method of [29] Present method

1 8.5741 × 10−4 9.5384 × 10−3 2.4108 × 10−3

1/2 2.8660 × 10−8 4.8946 × 10−4 3.3516 × 10−4

1/4 1.6693 × 10−9 3.2353 × 10−5 2.9108 × 10−5

Figure 5. Approximation solution with its contour and graph of
absolute error at final time T = 1 for Test problem 5.
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Figure 6. Approximation solution for Test problem 5.

5.5. Test problem 5. We consider the Schrödinger-Boussinesq system as [28]
i
∂u

∂t
+ γuxx = ξuv, x ∈ Ω, t > 0,

∂2v

∂t2
= vxx − αvxxxx + (f(v))xx + ω(|u|2)xx, x ∈ Ω, t > 0,

(5.10)

with exact solution
u(x, t) =

√
18b1d1

ωξ
sech(µζ) tanh(µζ)ei(

M
2γ x+δt),

v(x, t) = −6b1
ξ

sech2(µζ),

(5.11)

in which

b1 = δ +
M2

4γ
, d1 = 1−M2, µ =

√
b1
γ
,

ζ = x−Mt, γ = 1, ξ = −6, α = 1,

θ = 0, ω = 2, M =
√

3, δ =
1

4
.

We solve this equation using the proposed technique. Table 9 presents the error
obtained to show the accuracy and computational order of time-discrete scheme with
h = 1/300 for Test problem 4.

5.6. Test problem 6. (Collision of triple solitons:) In order to show the inter-
actions of three solitons, we solve the system (1.4) with the following initial conditions
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Table 9. Numerical results and computational orders for Test prob-
lem 5

u u

τ h = 1/500 C-order h = 1/400 C-order

1
10

1.0342 × 10−1 − 4.1999 × 10−1 −
1
20

6.3888 × 10−3 4.0168 2.5267 × 10−2 4.0545
1
40

4.1282 × 10−4 3.9520 2.0463 × 10−3 3.6267
1
80

2.3636 × 10−5 4.1264 6.2621 × 10−5 5.0302
1

160
1.4721 × 10−6 4.0050 3.7809 × 10−6 4.0498

1
320

8.9649 × 10−9 4.0374 2.3073 × 10−7 4.0344

Figure 7. Graphs of three solitons interaction at different time t
using the present method and with h = 1/2, τ = 40/40000 and
c = 0.43 on [−20, 60] for Test problem 6.



u(x, 0) =

3∑
j=1

√
2αj

1 + β
sech

(√
2αjxj

)
exp (ivjxj) ,

v(x, 0) =

3∑
j=1

√
2αj

1 + β
sech

(√
2αjxj

)
exp (ivjxj) ,

(5.12)

in which x1 = x, x2 = x− 25 and x3 = x− 50. Also, we put v1 = 1, v2 = 0, v3 = −1,
α1 = 1, α2 = 0.6, α3 = 0.3, and a(t) = b(t) = c(t) = h(t) = 1.

Figure 7 presents the graphs of three solitons interaction at different time t using
the present method with h = 1/2, τ = 40/40000 and c = 0.43 on [−20, 60] for Test
problem 6. Figure 7 shows the time evolution of the three-soliton interactions at
different times.
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6. Conclusion

In this paper, we solved the generalized variable coefficient Schrödinger equation
and Schrödinger-Boussinesq system using the smooth particle hydrodynamic (SPH)
procedure. The SPH method is one of the meshless methods based on the strong form.
At first, the spatial direction has been discretized based on the SPH technique and
then a semi-discrete scheme is derived. The obtained semi-discrete scheme depends on
time variable and also it is a system of ODEs. To get a high-order accurate numerical
technique, we applied the fourth-order exponential time differenceing Runge-Kutta
method (ETDRK4) for the obtained system of ODEs. Numerical results showed that
the computational orders of time discrete are close to the theoretical convergence
orders and confirm the efficiency of new method developed in the current paper.
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